

02

PAGE NO.

Contents

Oilseed Rape Variety Notes 2024	04 - 10
Wheat Variety Notes 2024	11 - 19
Winter Barley Variety Notes 2024	20 - 24
Winter Oat Variety Notes 2024	25 - 26
Hybrid Rye Variety Notes 2024	27
Winter Bean Variety Notes 2024	28
Seed Rate Charts	29
Regional Trials Helix & Hutchinsons	30-31
Our Specialist Seed Mixes	32
Spring Cropping Overview	33 - 36
Maize Variety Options	37
Our Services	38 - 39
Our Forage Options	40 - 41
Recommended List Charts	42 - 54

Message from the Seed Team

"Having experienced extreme weather patterns and a pandemic in the last two years" was the opening line last year... The pandemic duly receded; however, our weather patterns and changeable climate remain as fickle as ever. In fact, when the heavens opened in November 2023, we didn't foresee that they would still be in full flow in January of this year!

The adverse conditions strongly suggest that seed crops will be challenged both in terms of volume and in what was indeed planted at all. Therefore, ordering of new key varieties is something that will potentially need an earlier focus for the autumn of 2024.

The oilseed rape market dipped back in 2023 as both end market pricing and the all too familiar flea beetle challenge impacted sharply. Achieving fullest establishment is still paramount and ensuring that conditions are appropriate at the time of planting.

The key OSR traits should remain Hybrid, TuYV resistance, Pod Shatter resistance, robust disease scores and vigour. All can be found within the hybrid portfolio on offer, with our key offer of **LG Academic** ticking the boxes (**KWS Hinsta** which is a candidate for this autumn also offers similar potential and there are only 300 packs for this coming season). The offer for conventional varieties will also remain essential, with this market having decreased again last autumn but still very much key to many growers given the preference for home saving.

New genetics mean that Barley Yellow Dwarf Virus (BYDV) tolerant hybrid barley is available commercially for autumn 2024 in the guise of **SY Harrier** and candidate variety **SY Kestrel**. Circa 30% will continue to be the likely Hyvido market share. Of the conventional 2-row barleys, note should be taken of **LG Capitol**, newly recommended last autumn, which has yield to match the best Hyvido varieties and in the East outperforms both Hyvido and conventional barley - its grain quality is excellent too, reducing risk at end user destinations.

As far as BYDV management is concerned, then it should be considered in the form of **RGT Grouse**, which offers the potential to be insecticide free with both BYDV and Orange Wheat Blossom Midge (OWBM) resistance.

Crusoe and RGT Illustrious will remain the millers' preferred quality options in the wheat market, with both reasonably tight in the marketplace. However, SY Cheer is a newly recommended Group 1 with far superior disease resistance to its contemporaries within the sector, which at time of writing is awaiting full miller support. On the back of a very successful introduction of KWS Dawsum (19% of UK wheat market) and Champion in 2022, LG Beowulf sets the new benchmark for hard Group 4's with excellent Yellow Rust resistance and OWBM packaged together. It also stands well and is significantly higher yielding in the North. A candidate from 2023 worth noting is Bamford, which is now fully recommended in the group 3 sector, with a step change in yield within the sector coupled with multiple end user options.

We would strongly advise that if you wish to engage specifically with either Beowulf and Bamford, that you do so sooner rather than later to secure your required volume. The same would be true of varieties that have shrinking market shares but still work well individually for you.

LG Academic

With a realistic view of the OSR market perhaps reaching no more 300,000ha in the autumn of 2024, given appropriate growing conditions at time of drilling and of course a grain market that supports the venture, then the need to find ideal varieties that suit both region and soil types is key. For this purpose, we are highlighting the newly recommended variety on the AHDB list with huge potential for this year which is **LG Academic**.

With this universal ability to perform across the regions, coupled with RLM 7+ Phoma resistance, Academic has very decent light leaf spot resistance coupled with TuYV which is now a key consideration in oilseed rape and the addition of pod shatter resistance.

LG Academic can be the early drilled and mainstream option (but also very comfortable first half September), or indeed later if the soils remain warm and there is moisture to utilise. We would have no concern if drilled up to mid-September. The variety possesses excellent autumn and spring vigour, enabling good establishment and the ability to grow away post winter.

01945 586462
seedorders@hlhltd.co.uk
hutchinsons.co.uk

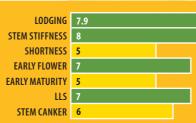
If OSR is a key part of your rotation or purely an *academic* proposition at present, then there is no doubt that as far as varietal choice is concerned, LG Academic should be a key part of that crop portfolio for autumn 2024.

AHDB		NEW
RECOMMENDED Variety type Scope of recommendation	LG Aviron Hybrid UK	LG Academic Hybrid UK
Gross output, yield adjusted (% TREATED CONTROL)	for oil conter	it
United Kingdom (5.3 t/ha)	102	106
East/West region (5.2 t/ha)	102	106
North region (5.9 t/ha)	103	107
Seed yield (% treated conti	r ol) (% TREATED	CONTROL)
United Kingdom (4.9 t/ha)	103	106
East/West region (4.8 t/ha)	103	106
North region (5.4 t/ha)	104	107
United Kingdom (5.4 t/ha)	-	-
United Kingdom (5.0 t/ha)	-	-
Agronomic features		
Resistance to lodging (1–9)	[7.8]	[7.9]
Stem stiffness (1–9)	7	8
Shortness of stem (1–9)	6	5
Plant height (cm) Earliness of flowering (1—9)	147 8	152 7
Earliness of maturity (1–9)	6	5
Pod shatter resistance	R	R
Disease resistance		
Light leaf spot (1—9)	7	7
Stem canker (1–9)	6	6
TuYV	R	R
Oil Content, fungicide-trea	ted %	
	44.4	45.2

RECOMMENDED LIST CHART PAGES 44 - 45

Oilseed Rape

Variety Notes 2024



LIMAGRAIN

RESTORED HYBRID

Gross Output: 106 (UK) • Oil content: 45.2
TuYV resistant • Recommended for UK

- NEW A restored hybrid variety, recommended for the UK for 2024
- Pod shatter resistance

- VERY HIGH output variety with TuYV resistance
- Excellent standing ability
- Performs across the UK.

LIMAGRAIN

RESTORED HYBRID

Gross Output: 105 (UK) • Oil content: 45.3 TuYV resistant • Recommended for UK

 A restored hybrid variety, first recommended for the UK in 2023

LODGING	7.9		
STEM STIFFNESS	8		
SHORTNESS	6		
EARLY FLOWER	7		
ARLY MATURITY	5		
LLS	7		
STEM CANKER	5		

- Pod shatter resistance
- High gross output variety with TuYV resistance.

MAVERICK

LSPB

RESTORED HYBRID

Gross Output: 108 • Oil content: 46.1 Candidate for 2024

- Restored hybrid candidate for the UK, first listed for autumn 2024
- Good resistance to light leaf spot and stem canker
- RImS and RIm 7 double Phoma resistance

LODGING	9
STEM STIFFNESS	8
SHORTNESS	6
EARLY FLOWER	6
EARLY MATURITY	5
LLS	7
STEM CANKER	9

- Excellent autumn vigour and has good resistant to lodging
- No Pod Shatter but with TuYV, good LLS and exceptional Phoma resistance traits
- AHDB candidate list trial data.

LIMAGRAIN

RESTORED HYBRID

Gross Output: 103 (UK) • Oil content: 44.8 TuYV resistant • Recommended for UK

- TuYV resistance coupled with Pod shatter
- Most widely drilled variety in autumn 2022

LODGING	7.9
STEM STIFFNESS	7
SHORTNESS	6
EARLY FLOWER	7
EARLY MATURITY	5
LLS	7
STEM CANKER	5

 Excellent disease resistance, so in essence a good all-round variety with excellent vigour.

LIMAGRAIN

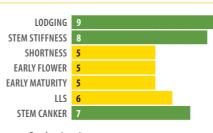
RESTORED HYBRID

Gross Output: 102 (UK) • Oil content: 44.4
TuYV resistant • Recommended for UK

- Added to the list in 2021
- Offers highest untreated seed yield on the Recommended List
- Exceptional autumn and spring vigour

LODGING	7.8	
STEM STIFFNESS	7	
SHORTNESS	6	
EARLY FLOWER	8	
EARLY MATURITY	6	
LLS	7	
STEM CANKER	6	

- Suited for a main to late drilling window
- Fully loaded hybrid N-Flex, RLM7+, POSH, TuYV
- Consistent high yield performance across all regions
- Semi exclusive to Hutchinsons.


DK Excentric

DEKALB

RESTORED HYBRID

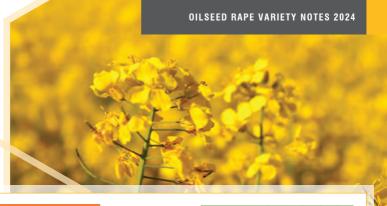
Gross Output: 101 (UK) • Oil content: 44.8 Breeder's information

- SEMI EXCLUSIVE to Hutchinsons
- Suitable for both the early and mainstream drilling window
- · Excellent autumn vigour

- · Good spring vigour
- TuYV resistant
- Has pod shatter resistance
- Good for withstanding verticillium.

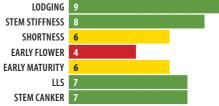
(

01945 586462



seedorders@hlhltd.co.uk

hutchinsons.co.uk


HINSTA

KWS

RESTORED HYBRID

Gross Output: 106 (UK) • Oil content: 46.2
Candidate for 2024 • Breeder's information

- Very capable verticillium resistance
- TuYV resistant

- New KWS Hybrid to be considered for 2024
- Stiff strawed with pod shatter resistance and TuYV.

PI PINNACLE

Mike Pickford

CONVENTIONAL

Gross Output: 102 (UK) • Oil content: 44.4
Recommended for UK

- NEW A conventional variety added to the 2024/25 Recommended List
- Suitable for main drilling window
- · Good autumn vigour
- Good LLS (7)

- New conventional option with very good yields in East/West.
- · Slightly more challenged on stem canker
- Highest yielding conventional variety

LIMAGRAIN

CONVENTIONAL

Gross Output: 99 (UK) • Oil content: 44.9 Recommended for East/West

- First added to the Recommended List in 2022
- Performs well in all regions

- Good autumn vigour and better than some of its contemporaries
- TuYV resistance trait in a conventional variety.

LIMAGRAIN

CONVENTIONAL

Gross Output: 98 (UK) • Oil content: 44.9
Recommended for UK

- Added to the RL in 2020 a later maturing variety, with high treated gross output
- Recommended for all regions

LODGING	8		
STEM STIFFNESS	8		
SHORTNESS	7		
EARLY FLOWER	6		
EARLY MATURITY	5		
LLS	6		
STEM CANKER	5		

- Very stiff stemmed, with a high resistance to lodging and excellent agronomics
- Excellent autumn and spring vigour for a conventional type.

CAMPUS

KWS

CONVENTIONAL

Gross Output: 101 • Oil content: 45.4 UK VARIETY • Breeder's information

- No longer on AHDB Recommended list
- Remarkably consistent
- Good disease resistance
- Second in terms of area to Acacia

- Short stiff strawed
- Still a very capable and consistent conventional variety
- Growers' favourite, yet to let anyone down with better ability to withstand verticillium wilt.

PT312 PROTECTOR

PROTECTOR SCLEROTINIA

PIONEER® VARIETY

Gross Output: 103 UK • Oil content: 47.6 UK variety • Breeder's information

- From the Protector[®]Sclerotinia hybrid portfolio launched in Europe
- TuYV resistance
- Multi genetic Phoma resistance

LODGING	9	
STEM STIFFNESS	8	
SHORTNESS	5	
EARLY FLOWER	4	
EARLY MATURITY	7	
LLS	5	
STEM CANKER	7	

- Unique in the current market place
- Exceptionally high oil content
- Not on AHDB list but a step on from PT303.

DSV

CLEARFIELD° HYBRID

Gross Output: 96 (UK) • Oil content: 45.6
Recommended for UK • TuYV resistant

- Clearfield® hybrid with TuYV resistance first added to 2022 Recommended List
- High oil content
- First quad trait stacked variety from DSV

LODGING	7.7
STEM STIFFNESS	7
SHORTNESS	5
EARLY FLOWER	6
EARLY MATURITY	6
LLS	6
STEM CANKER	7

- Still the highest yielding UK recommended Clearfield variety
- Pod shatter resistance.

PT279 CL

PIONEER

CLEARFIELD° VARIETY

Gross Output: 92 • Oil content: 44.5 Breeder's information

• A European Clearfield® hybrid variety

LODGING 8
STEM STIFFNESS 8
SHORTNESS 6
EARLY FLOWER 6
EARLY MATURITY 6
LLS 5
STEM CANKER 5

• No longer on AHDB Recommended List.

CROME

LSPB

RESTORED HYBRID

CLUBROOT RESISTANT

Gross Output: 96 (UK) • Oil content: 45.7
Recommended for Clubroot infected land only (UK)

Clubroot resistance

LODGING 7.9

STEM STIFFNESS 8

SHORTNESS 6

EARLY FLOWER 7

EARLY MATURITY 5

LLS 6

STEM CANKER 3

 Suitable for sites where the Clubroot pathogen is a limitation to varieties without resistance.

LIMAGRAIN

RESTORED HYBRID

Gross Output: 102.5 • Oil content: 45.8

CLUBROOT RESISTANT

For Clubroot infected land only Breeder's information

- For Clubroot situations in East/West regions
- Good yields in East/West
- Should only be grown in areas where Clubroot is a threat!

- LODGING 8
 STEM STIFFNESS 8
 SHORTNESS 6
 EARLY FLOWER 7
 EARLY MATURITY 7
 LLS 6
 STEM CANKER 6
- Weaker on Phoma, but has good standing power
 - TuYV resistant.

Wheat

Variety Notes 2024

KWS ZYATT

KWS

GROUP 1 HARD

UK 99 • EAST 98 • WEST 99 • NORTH 97 Parentage: Hereford x Quartz

- Group 1 variety with high yields, milling quality characteristics and a now average agronomic package
- Starting to be challenged significantly by yellow rust
- Now well-liked by multiple end users, careful N
 management required to ensure full protein specification

MILDEW 7
YELLOW RUST 3
BROWN RUST 7
SEPTORIA TRITICI 6.3
EYESPOT 6
FUSARIUM 6

- Good eyespot rating
- UKp bread export potential.

NOTES: Performs very well as a second wheat. Relatively short and a good stander.

Winter wheat

SYNGENTA

GROUP 1 HARD

UK 97 • EAST 97 • WEST 98 • NORTH (98) Parentage: KWS Trinity x Expert

- NEW Group 1 variety with reasonable yields, milling quality characteristics and a better than average agronomic package
- Yellow rust a significant improvement on the Zyatt and Skyfall axis
- Awaiting end user support in its first commercial year in the market place at time of writing

MILDEW 8
YELLOW RUST 7
BROWN RUST 6
SEPTORIA TRITICI 6
EYESPOT 4
FUSARIUM 7

- Poorer for eyespot
- Good grain quality with excellent bushel weight and useful protein levels.

NOTES: Best untreated yield in the group 1 sector.

RGT SKYFALL

RAGT

GROUP 1 HARD

UK 96 • EAST 96 • WEST 96 • NORTH 95 Parentage: C4148 x Hurricane

- Good yielding, awned Group 1 variety
- Relativity short and a good stander, better drilled towards the end September due to its rapid speed of development in the spring
- It is an early maturing variety
- High Fusarium rating makes it especially suited to be grown after maize. Yellow rust now a major concern and needs monitoring closely
- Has Pch1 eyespot resistant gene, good 2nd wheat, performs well on light soils

MILDEW	6
YELLOW RUST	3
BROWN RUST	9
SEPTORIA TRITICI	5.8
EYESPOT	6
FUSARIUM	7

- The only quality wheat to have OWBM resistance, giving it a definite advantage over its counterparts
- Higher N applications needed to achieve full protein specification
- Good Hagbergs (although has a tendency to sprout, so priority must be given to it at harvest), it also has a good specific weight
- Most flexible drilling dates currently available.

NOTES: Grown specifically for milling and flexibility in drilling date. Starting to be challenged annually by Yellow Rust.

RGT ILLUSTRIOUS

RAGT

GROUP 1 HARD

UK 95 • EAST 95 • WEST 96 • NORTH 94 • Parentage: Qplus x Battalion

- · Short and stiff strawed with high Hagberg and with a specific weight of 78.0kg/hl
- · Excellent milling quality and likely to find more demand this autumn as concerns grow for alternatives

MILDEW YELLOW RUST **BROWN RUST** SEPTORIA TRITICI **EYESPOT FUSARIUM**

• Second highest untreated yield of the group one.

MILDEW

LIMAGRAIN

GROUP 1 HARD

UK 95 • EAST 95 • WEST 96 • NORTH 94 • Parentage: Cordiale x Gulliver

- Good agronomics apart from a growing susceptibility to brown rust and eyespot, average Septoria score
- An established, consistent milling variety becoming very popular with end users for its specific quality attributes
- YELLOW RUST BROWN RUST 3 SEPTORIA TRITICI **EYESPOT FUSARIUM**
 - Best converter of Nitrogen to Protein currently available
 - · Meets the specifications for UKp bread wheat for export, good specific weight and Hagbergs
 - Still a very well-respected variety by the millers and maintains a niche market share.

KWS EXTASE

KWS

GROUP 2 HARD

UK 101 • EAST 101 • WEST 102 • NORTH 99

Parentage: Boisseau x Solheio

- Group 2 added to the recommended list in 2019
- Still the highest untreated yield on the RL and high treated yields in the West
- Very good yellow rust rating with very good septoria resistance
- Has done particularly well relative to others on the light soils

MILDEW 7
YELLOW RUST 7
BROWN RUST 6
SEPTORIA TRITICI 7.4
EYESPOT 4
FUSARIUM 6

- Better suited to mid drilling slot (relatively tall but good stander)
- Attracting good milling premiums in current marketplace.

NOTES: Third highest Septoria Tritici resistance rating on the recommended list at 7.4.

KWS PALLADIUM

KWS

GROUP 2 HARD

UK 100 • EAST 99 • WEST 101 • NORTH 99 Parentage: KWS Zyatt x KWS Trinity

- Added to RL in 2022 a short and stiff strawed variety
 Meets the specifications for bread making but
- One of the highest untreated UK yields on the RL
- Good overall disease package. Has done well as a first or second wheat
- MILDEW 8
 YELLOW RUST 9
 BROWN RUST 5
 SEPTORIA TRITICI
 EYESPOT 6
 FUSARIUM 6
 - Meets the specifications for bread making but not export
 - Newly recommended and worth consideration in this sector.

ULTIMATUM

KWS

GROUP 2 HARD

UK 101 • EAST 101 • WEST 101 • NORTH 101
Parentage: KWS Zyatt x Costello

- Group 2 variety added to the Recommended List for 2023/24
- Moderately strawed with high resistance to yellow rust
- Possibly better suited to an earlier drilling slot

- Good Fusarium resistance so a variety that will perhaps fit in a maize rotation
- Limited data would suggest it has UKs export potential.

MAYFLOWER

ELSOMS

GROUP 2 HARD

UK 97 • EAST 97 • WEST 97 • NORTH 96 Parentage: Ascott x Armada

- Group 2 variety with good all-round disease resistance Excellent resistance to Septoria and Yellow Rust
- UK bread making and export markets

MILDEW	7
ELLOW RUST	9

BROWN RUST 6

EYESPOT

FUSARIUM

SEPTORIA TRITICI 8.9

- · Limited yield potential.

6.7

BAMFORD

ELSOMS

GROUP 3 SOFT

UK 106 • EAST 105 • WEST 107 • NORTH (105) Parentage: Moulton x EW129

- NEW Group 3 variety with VERY high yields
- Good yellow rust resistance
- Multiple end users for distilling, biscuit making and UK soft export
- Good eyespot rating with Pch 1 gene
- Useful standing ability

YELLOW RUST 7 **BROWN RUST** SEPTORIA TRITICI

 Exceptional bushel weight in the group 3 sector at 78.5.

NOTES: Game changer in the group 3 market with yield potential as good as any current recommended variety.

GROUP 3 SOFT

UK 100 • EAST 101 • WEST 99 • NORTH 99 Parentage: (RGT Pembroke x Evolution) x Dickens

- Added to the Recommended List for 2023/24
- Short stiff straw
- Good eyespot resistance
- · Suitable for export and distilling.

MILDEW YELLOW RUST 7 **BROWN RUST** SEPTORIA TRITICI 5.5 EYESPOT **FUSARIUM**

NOTES: Good quality group 3 with good

LIMAGRAIN

GROUP 3 SOFT

UK 98 • EAST 98 • WEST 98 • NORTH 97 Parentage: (Cougar x Leeds) x Britannia

Added to the Recommended List in 2021

NOTES: • Excellent bushel weight. • Strong agronomic package with only Mildew a weakness.

• Suitable for biscuit making and distilling home end markets. • Very good standing ability with a 9 when treated with PGF

FUSARIUM

6

LIMAGRAIN

GROUP 4 SOFT

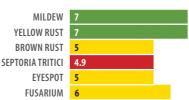
UK 106 • EAST 105 • WEST 107 • NORTH 104 Parentage: LG Sundance x Generation

- Added to Recommended List in 2023
- Will require robust PGR programme to realise full potential
- Performs well in all regions but especially in the East and West
- Suitable for distilling

MILDEW 5
YELLOW RUST 7
BROWN RUST 7
SEPTORIA TRITICI 6.5
EYESPOT 4
FUSARIUM 6

- Slightly lower bushel weight so optimise site choice to negate the challenge accordingly
- Susceptible to Eyespot.

NOTES: Highest yielding variety in the soft Group 4 list for autumn 2024. A horse for a course with careful management required.



LIMAGRAIN

GROUP 4 SOFT

UK 102 • EAST 103 • WEST 101 • NORTH 101
Parentage: (Cassius x NAWWW29) x KWS Santiago

- A high yielding Group 4 soft variety first added to the 2019 Recommended List
- A relatively tall variety, but with acceptable straw strength nonetheless. Good PGR management and later drilling will assist with any minor concerns

- Weaker on Septoria, but above average score for yellow rust and with OWBM resistance
- Very consistent yield performance (Season v Regional).

NOTES: Soft milling feed variety with excellent grain quality. "Good" distilling quality (+ve) in last two years.

BLACKSTONE

ELSOMS

GROUP 4 SOFT

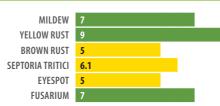
UK 103 • EAST 103 • WEST 101 • NORTH (103) Parentage: Panacea x KW Tempo

- NEW added to the 2024/25 Recommended List, a group 4 soft with very good yields
- Very good disease resistance particularly Yellow Rust and Fusarium

7					
9					
6					
6.2					
5					
8					
	9 6 6.2 5	9 6 6.2 5	6 6.2 5	6 6.2 5	6 6.2 5

- Decent standing ability
- Slightly later maturing +2.

NOTES: OWBM resistant.


ZEALUM

KWS

GROUP 4 SOFT

UK 102 • EAST 103 • WEST 102 • NORTH 102 Parentage: KWS Basset x Reflection

- Group 4 feed soft wheat variety added to the Recommended List 2023
- Consistent performer across all regions

Solid disease resistance and OWBM resistant and excellent yellow rust

MILDEW

YELLOW RUST 8
BROWN RUST 6
SEPTORIA TRITICI 5.9

EYESPOT 4

FUSARIUM

 Good grain quality and straw strength is very good with a PGR.

RAGT

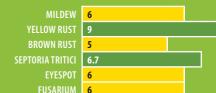
GROUP 4 SOFT

UK 102 • EAST 102 • WEST 103 • NORTH 102 • Parentage: (Revelation x Santiago) x Cougar

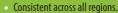
- First added to the Recommended List for 2022
- · Good standing ability
- · Performs well in all regions
- Suitable for distilling
- PGR programme will be needed for twin lodging 6's

Preferred to RGT Stokes for OWBM resistance.

NOTES: Group 4 without offering anything outstanding other than being a suitable option for the North and its distilling market.



LIMAGRAIN


GROUP 4 HARD

UK 106 • EAST 106 • WEST 106 • NORTH (107)
Parentage: Gleam x Costello

- NEW added to the 2024/25 Recommended List, a Group 4 hard with very high yield
- OWBM resistant
- Excellent Yellow Rust resistance

Useful septoria resistance at 6.7

NOTES: Looks to be an exceptionally good stander.

nsv

GROUP 4 HARD

UK 106 • EAST 106 • WEST 106 • NORTH 103 Parentage: DSV20122 x Reflection

- Very high yielding hard group 4 recommended in 2022
- Has performed well in first and second wheat situations on light or heavy soils
- Very good in the West with accomplished Septoria resistance

- Very high yielding in the East
- A weaker strawed variety that will reach maximum potential with a robust PGR programme
- OWBM resistant.

NOTES: Excellent potential but care needed on lighter soils.

KWS DAWSUM

VIIIC

GROUP 4 HARD

UK 103 • EAST 103 • WEST 104 • NORTH 105 Parentage: KWS Kerrin x Costello

- High yielding feed variety added to the Recommended List in 2022
- Produced consistent high yields
- Good standing ability with strong twin lodging 7's
- High yield potential in all regions

- Very good Hagberg and specific weight
- Stiff strawed and performs particularly well on heavy soils.

NOTES: A very safe looking wheat in the same vein as Costello.

Winter wheat

SYNGENTA

GROUP 4 HARD

UK 104 • EAST 104 • WEST 105 • NORTH 105 Parentage: (Hereford x Oakley) x Hereford

- · A variety with high yields
- Has performed in all regions especially the North
- Very early maturing variety with reasonable disease resistance

MILDEW	7
YELLOW RUST	4
BROWN RUST	6
SEPTORIA TRITICI	6.4
EYESPOT	5
FUSARIUM	7

- Good Hagberg and excellent bushel weight, providing confidence in grain quality
- · Yellow rust needs monitoring.

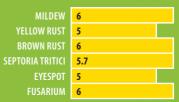
DSV

GROUP 4 HARD

UK 104 • EAST 104 • WEST 104 • NORTH 101 Parentage: DSV20122 x Reflection

- Group 4 hard feed wheat variety added to the Recommended List in 2023
- This variety has produced consistent treated UK yields
 good first wheat, potentially a second wheat too

- Only average resistance to lodging, although has done relatively better from later drilling
- Excellent yellow rust and a capable performer elsewhere across the disease profile
- OWBM resistance
- From the same breeder as Champion and probably not quite as good an option.


Winter wheat

SYNGENTA

GROUP 4 HARD

UK 103 • EAST 103 • WEST 103 • NORTH 103 • Parentage: Hereford x KWS Kielder

- A very consistent performer across the regions
- Robust agronomics and high untreated yields will offer easier management in most situations
- Performs well on all soil types, in either first or second wheat situations
- It is a short and stiffer strawed variety

- OWBM resistant
- Good grain quality and early to mature.

NOTES: Particularly flexible wheat, first or second, early or late drilled, good grain characteristics, has started to be affected by yellow rust due to the Hereford in its parentage.

Winter wheat

SYNGENTA

GROUP 4 HARD

UK 102 • EAST 101 • WEST 104 • NORTH 102 Parentage: Premio x Expert

- A variety with high untreated yields
- Has performed best in the West less suitable North of the borders
- Very early maturing variety with good all-round disease resistance and good Septoria Tritici resistance, although only weakness being a poor Eyespot rating
- Suitable for early drilling in first wheat situations

- **YELLOW RUST** SEPTORIA TRITICI 6.6
 - Good resistance to sprouting
 - Good Hagberg and bushel weight, providing confidence in grain quality.

NOTES: Good for Septoria with little breakdown to date making it a good geographical fit for the South West and West, whilst not undermining its national ability as a clean variety. Looks to be a suitable early drilling option.

LIMAGRAIN

GROUP 4 HARD

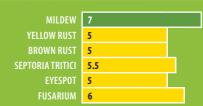
UK 100 • EAST 100 • WEST 100 • NORTH 101 Parentage: LG Garrus x LGW88

- · Added to the RL in 2022
- Good standing ability
- Performs consistently across all regions
- No disease weaknesses

MILDEW	7	
YELLOW RUST	9	
BROWN RUST	6	
SEPTORIA TRITICI	7.2	
EYESPOT	5	
FUSARIUM	6	

- Good Septoria resistance
- OWBM resistant.

NOTES: A hard group 4, without offering anything outstanding in yield but a safe disease profile.


RGT GROUSE

RAGT

GROUP 4 HARD

Parentage: - coded PD lines BYDV Resistance Trait • Breeder's information

- **BYDV resistance** and by definition a useful management tool
- Weaker yellow rust score advocates tighter crop management particularly in the East

- Acceptable grain quality without being outstanding
- Suitable for drilling from early September onwards.

NOTES: BYDV and OWBM resistant variety.

Winter Barley

Variety Notes 2024

BUCCANEER

SAATEN UNION UK

TWO ROW MALTING

UK 99 • EAST 100 • WEST 98 • NORTH 100 • BaYMV Resistant • Parentage: Zophia x SJ128225

- Two row malting variety with provisional approval for brewing
- · Performed well in all regions
- Has good potential in Scotland

- Suited to heavier soils and has high brown rust rating
- Good disease resistance

MILDEW 6

BROWN RUST RHYNCHOSPORIUM

NET BLOTCH 5

MILDEW BROWN RUST 8 RHYNCHOSPORIUM 7

NET BLOTCH 6

Resistant to BaYMV strains.

Winter barley

SYNGENTA

TWO ROW MALTING

UK 96 • EAST 96 • WEST 96 • NORTH 96 • BaYMV Resistant • Parentage: SY208-56 x SY208-59

- Two row malting variety, has full approval from MBC for brewing
- · Performed well in all regions
- Has produced high specific weights
- Suited to heavier soils and has high brown rust rating
- Has been seen to be relatively early maturing
- Resistant to BaYMV strains.

NOTES: Malting variety suited to the East and West regions with full MBC approval.

SYNGENTA

TWO ROW MALTING

UK 93 • EAST 93 • WEST 93 • NORTH 93 • BaYMV Resistant • Parentage: SY 208-56 x SY Venture

- Malting variety, has full approval from the MBC for brewing with good agronomic characteristics
- Stiff-strawed and has performed better on light soils

MILDEW BROWN RUST 7 RHYNCHOSPORIUM NET BLOTCH 5

Resistant to common strains of BaYMV.

NOTES: Electrum has the nudge on yield, but consumers will have the final say on quality.

LIMAGRAIN

TWO ROW FEED

UK 106 • EAST 107 • WEST 105 • NORTH 104 • BaYMV Resistant Parentage: LGBU11-5493-B x KWS Moselle

- Very high bushel weight 71.4
- Reasonable standing ability (7).

MILDEW 7 BROWN RUST 7 RHYNCHOSPORIUM 6 NET BLOTCH 6

NOTES: Performs well on all soil types and across the regions. Exceptional in the East where it is the joint highest yielding variety on the AHDB list with LG Capitol.

LIMAGRAIN

TWO ROW FEED

UK 106 • EAST 107 • WEST (103) • NORTH (105) • BaYMV Resistant Parentage: LGBU11-5493-B x KWS Moselle

- **NEW** A very high-yielding two row feed variety for the UK
- This variety has performed well in all regions to date and highest yielding in the East
- Bushel weight 69.9
- Has shown no weaknesses in disease profile to date
- Resistant to common strains of BaYMV
- Good brackling resistance

MILDEW 6 BROWN RUST 7 RHYNCHOSPORIUM 6 NET BLOTCH 5

• Semi exclusive variety to Hutchinsons.

NOTES: Newly recommended for 2024, guite accomplished, and maybe the one to beat this year.

LIGHTNING LISOMS ACKERMANN BARLEY BARLEY

MILDEW 6 BROWN RUST 8

RHYNCHOSPORIUM

NFT BLOTCH 6

ELSOMS ACKERMANN

TWO ROW FEED

UK 103 • EAST 104 • WEST 102 • NORTH 103 • BaYMV Resistant

- A two row feed variety added to the Recommended List in 2022
- · Very high untreated yield
- Taller strawed

01945 586462

seedorders@hlhltd.co.uk

hutchinsons.co.uk

• Highest yields in the East where it performs very solidly. Good in the North and West too.

NOTES: Looks to offer excellent management opportunity, coupled with good yields across the UK.

KWS TARDIS

MILDEW	5
BROWN RUST	6
RHYNCHOSPORIUM	6
NET BLOTCH	6

TWO ROW FEED

UK 103 • EAST 104 • WEST 101 • NORTH 103 • BaYMV Resistant • Parentage: 11-12 x KWS Orwell

- High yielding two row barley
- Stiff strawed
- Very good resistance to Rhynchosporium
- Most widely grown in 2023 with 32% market share.

Notes: Sold exceptionally well again in autumn 2023 but under pressure from the higher yielding LG Capitol and LG Caravelle, but likely to remain market leader.

BOLTON

MILDEW 6 BROWN RUST 7 RHYNCHOSPORIUM 5

NET BLOTCH 5

ELSOMS ACKERMANN

TWO ROW FEED

UK 103 • EAST 105 • WEST 101 • NORTH 101 • BaYMV Resistant • Parentage: KWS Cassia x KWS California

- A high yielding two row feed barley variety for the UK
 Consistent performer since listing in 2021
- Performs well across all regions but best in the East
- Excellent grain quality with low screenings
- Good disease resistance.

SYNGENTA

MILDEW 7 BROWN RUST 6 RHYNCHOSPORIUM 7 NET BLOTCH 5

SIX ROW FEED

UK 108 • EAST 106 • WEST (116) • NORTH (108) BaYMV Resistant • Parentage: F1 Hybrid • Candidate for 2024

- Very high yielding candidate hybrid variety
- Good untreated yield and high resistance to rusts and Rhynchosporium - BaYMV resistant
- Very high specific weight and low screenings
- Performed exceptionally in the West on limited data set.

RHYNCHOSPORIUM 7

MILDEW 7

SYNGENTA

SIX ROW FEED

UK 107 • East 106 • West 108 • North 107 • BaYMV Resistant • Parentage: F1 hybrid

- Highest yielding six row hybrid feed variety on the AHDB Recommended List
- Resistant to common strains of BaYMV
- Good bushel weight
- Taller variety with weaker straw Will respond to a robust PGR programme

Overyeared seed and likely to be its last autumn.

NOTES: Excellent variety from Syngenta with sound grain quality and very high yield. Taller than some, so attention to preferred PGR programme will assist in achieving fullest potential.

Hvvido

MILDEW 7 BROWN RUST 5

RHYNCHOSPORIUM 7 NET BLOTCH 5

SIX ROW FEED

UK 107 • East 106 • West 107 • North 107 • BaYMV Resistant • Parentage: F1 Hybrid

- High yielding six row hybrid feed variety
- Most widely grown variety within the hybrid sector
- Good overall disease resistance

- High specific weight and good resistance to lodging
- Resistant to common strains of BaYMV.

SYNGENTA

SIX ROW FEED

MILDEW BROWN RUST 7

NET BLOTCH 6

RHYNCHOSPORIUM 7

- UK 104 East 105 West 102 North 105 BaYMV Resistant Parentage: F1 Hybrid
- A high yielding six row hybrid feed variety added to 2023/24 Recommended List
- Resistant to common strains of BaYMV
- Consistent across all regions of the UK but slightly weaker in the West
- Best resistance to Rhynchosporium.

MILDEW 6

NET BLOTCH 7

SIX ROW FEED

UK 103 • East 104 • West (101) • North (102) • BYDV Tolerant • 2023 Candidate

- NEW six row hybrid feed variety added to 2024/25 Recommended List
- High yielding hybrid barley
- Lower untreated yields but responds well to fungicides
- BYDV Tolerant new trait for management of high pressure aphid levels
- Performs well on heavier soils but with robust PGR programme.

Hyvido[®] Ned

SIX ROW FEED

UK 103 • EAST 102 • WEST (107) • NORTH (103) **BYDV Resistant • Candidate for 2024**

Parentage: F1 Hybrid

- Candidate variety for 2024
- High yielding hybrid barley

MILDEW	7	
BROWN RUST	6	
ICHOSPORIUM	7	
NET BLOTCH	6	

- BYDV Resistant new trait for management of high-pressure aphid levels
- Performs well on all soils, with reasonable standing ability.

KWS FEERIS

MILDEW 5
BROWN RUST 6
RHYNCHOSPORIUM 6
NET BLOTCH 6

5	
6	
6	
_	

KWS

SIX ROW FEED

UK 102 • EAST 102 • WEST 102 • NORTH 100
BayMV Resistant • BYDV Tolerant • Parentage: Amistar x KWS Kosmos

- Added to list in 2021/22 a high yielding conventional six row feed barley variety for the UK
- Highest yielding barley with BYDV tolerance currently available in the marketplace
- Stiff strawed
- Good resistance to Rhynchosporium.

Notes: Recommended and able to offer added protection against BYDV with little detriment to yield and quality. Should be considered as a management tool for barley growers this autumn. Stewardship on BYDV needed to reach full potential.

DSV

6 ROW CONVENTIONAL BARLEY

UK 104 • EAST 104 • WEST 104 • NORTH 104
BayMV Resistant • ByDV Tolerant • Breeder's information

- Introduced in 2021 to the UK
- Tolerant to BYDV
- Strong disease resistance
- Very competitive with blackgrass

MILDEW 6
YELLOW RUST 8
BROWN RUST 8
RHYNCHOSPORIUM 6
NET BLOTCH 5

 Not on the AHDB list but will find support given lack of seed treatment for BYDV.

NOTES: Tolerance to BYDV with early maturity.

01945 586462

colored seed orders@hlhltd.co.uk

hutchinsons.co.uk

Malting Barley Committee Approved List of Winter Varieties Harvest 2024

Full Approval: CRAFT

ELECTRUM

Winter Varieties for Brewing Use

Provisional Approval: BUCCANEER

Winter Oat

Variety Notes 2024

RESISTANCE TO LODGING MILDEW 4

RAGT - UK 105

- RGT Southwark is the highest yielding winter oat on the 2024/25 Recommended List
- It combines high yield and quality, notably specific weight
- RGT Southwark has high resistance to the common strains of crown rust, but is susceptible to mildew
- It is relatively early maturing, with a low lodging resistance.

RESISTANCE TO LODGING

MILDEW 3

CROWN RUST 5

Senova - UK 103

- First added to the 2023 Recommended List, a winter husked oat with great potential for the milling markets
- Cromwell is a Mascani cross but produces significantly higher yields
- Combines all of the attributes desired by the millers high yields, excellent kernel content and specific weight, high hullability and low screening losses
- It is a short, stiff strawed variety data suggests it is very susceptible to mildew.

RESISTANCE TO LODGING 4 MILDEW 4 CROWN RUST 4

SENOVA - UK 101

- Dalguise is a very consistent variety with relatively low screenings and a high specific weight
- It has relatively long straw with low lodging resistance
- Needs robust management due to poor agronomic characteristics.

RESISTANCE TO LODGING 6 MILDEW 4

CROWN RUST 5

SENOVA - UK 95

 Gerald's consistent yields and good field characteristics
 Top quality milling variety – data suggests it is ensure it remains a popular variety choice for growers, although it is now being superseded

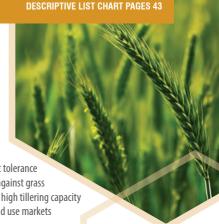
- susceptible to mildew
- A late maturing variety, with a low kernel content and moderate straw strength.

RESISTANCE TO LODGING MILDEW

CROWN RUST 5

SENOVA - UK 95

- Mascani remains by far the most popular variety with oat millers and growers
- It is less susceptible to mildew than most recommended varieties and has moderate resistance to crown rust, although a race exists to which it could be susceptible
- Mascani delivers moderate yields, but this is compensated by its combination of high kernel content and specific weight.


Hybrid Rye

Variety Notes 2024

Agronomic benefits:

- An economic alternative to second wheat
- Reduced fertiliser, herbicide and fungicide requirements Competitive against grass
- High straw vield
- Grows well on marginal land

- Good drought tolerance
- weeds due to high tillering capacity
- Expanding end use markets

Key Varieties:

POSEIDON

HYBRID RYF

As well as high yields and good grain quality, its fast plant development in the autumn and spring produces a high tillering, dense crop. Good for blackgrass suppression.

SU BARESI

HYBRID RYF

A further step forward in breeding from its predecessor SU Arvid, with standout gas yield and guality. A shorter plant type, with impressive standing ability.

HELLTOP

Despite being an older variety it offers good weed suppression, a powerful rooting system and bold grain size with high dry matter yield.

SU KARLSSON

HYBRID RYE

New for 2024/25 a dual-purpose variety with improved genetics that delivers high dry matter yields and consistently high methane content.

SU PERFORMER

HYBRID RYE

A consistent high yielding variety with good resistance to lodging. A mainstay variety in the Elsoms portfolio.

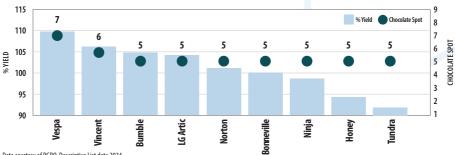
SERAFINO

Offers a leading harvest index (grains/ear), with excellent Hagberg (HFN) and sample quality. A good option for pig finishing or sow rations. Food industry uses include flour, breakfast cereals and distilling or malt.

SU PERSPECTIV

HYRRID RYF

Successor to the extremely popular SU PERFORMER with slightly earlier maturity and significantly better brown rust tolerance.


TAYO

Has high grain and straw yields, plus low growing costs. Also offers robust stem stiffness compared to older hybrids and good Brown Rust resistance. Good for pig finishing.

Winter Bean

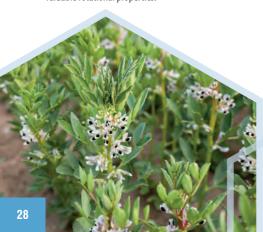
Variety Notes 2024

DL WINTER BEANS 2024

Data courtesy of PGRO, Descriptive List data 2024.

Beans provide a useful break to reduce cereal pests and diseases and an opportunity to control grass weeds in an arable rotation. In wet years and on heavy soils, beans perform better than peas. Beans also suffer less from pigeon damage, they are easier to combine, and growing costs can sometimes be lower.

Winter beans are generally a large-seeded crop with a thousand seed weight normally above 530 grams Downy mildew can cause yield loss in some seasons, but varieties with good resistance are available.


Early maturing spring beans can mature before winter beans. However, winter beans, given an end market demand by the consumer, are a low input crop offering valuable rotational properties.

Winter beans do not have a vernalisation requirement, although they are more winter hardy than spring types. In moisture-retentive and fertile fields that produce tall, lush crops, short-strawed varieties could be an asset. Ascochyta is most likely to be a problem in wet conditions and varieties with good resistance are available.

Beans, however, are harvested later than peas, and time of harvest is very dependent on seasonal weather in the August/September period. This is a consideration to take, given the uncertainties of our wonderful climate.

Vespa (best chocolate spot resistance) remain the go to variety followed by **Vincent** (best downy mildew resistance) and Bumble. All three are varieties from Senova. This is followed by **LG Artic** from Limagrain as one of only two varieties recommended from this breeder. **Vespa** accounts for a very significant part of the crop area accounting for circa 70% of the current season. This is unlikely to change in the short term.

For further agronomic characteristics please refer to the descriptive list within the seed guide.

Seed Rate Charts

Oil Seed Rape seeds/m ²	30	40	50	60	70	80	90	100
TGW								
4	1.2	1.6	2	2.4	2.8	3.2	3.6	4
4.5	1.35	1.8	2.25	2.7	3.15	3.6	4.05	4.5
5	1.5	2	2.5	3	3.5	4	4.5	5
5.5	1.65	2.2	2.75	3.3	3.85	4.4	4.95	5.5
6	1.8	2.4	3	3.6	4.2	4.8	5.4	6
6.5	1.95	2.6	3.25	3.9	4.55	5.2	5.85	6.5
							No.	M205
Cereals seeds/m ²	250	275	300	325	350	375	400	425
TGW								
45	113	124	135	147	158	169	180	192
46	115	127	138	150	161	173	184	196
47	118	130	141	153	165	177	188	200
48	120	132	144	156	168	180	192	204
49	123	135	147	160	172	184	196	209
50	125	138	150	163	175	188	200	213
51	128	141	153	166	179	192	204	217
52	130	143	156	169	182	195	208	221
								100

Winter Beans seeds/m²					
TGW					
500	100	110	120	130	140
525	105	116	126	137	148
550	110	121	132	143	154
575	115	127	138	150	162
600	120	132	144	156	168
625	125	138	150	163	175
650	130	143	156	169	182
675	135	149	162	176	189
700	140	154	168	182	196

Spring Beans seeds/m²	44	46	48	50	52	54	56
TGW							
500	220	230	240	250	260	270	280
525	231	242	252	263	274	284	295
550	242	253	264	275	286	297	308
575	253	265	276	288	300	311	323
600	264	277	288	301	313	325	337
625	275	288	300	313	326	338	351
650	286	300	312	326	339	352	365

Spring Peas seeds/m ²	74	76	78	80	82	84	86	88
TGW								
250	186	191	196	200	205	210	215	220
260	194	199	204	208	213	218	224	234
270	201	206	211	216	221	227	232	238
280	208	213	218	224	230	235	241	247
290	216	221	226	232	238	244	250	256
300	223	228	233	240	246	252	258	265

Units: kg/ha - The seed rates in kg/ha highlighted assume 100% establishment. To amend these figures to reflect your own expectations of establishment (to include germination and field losses), multiply the relevant figure (from the seed chart below) by 100 and divide by your expected establishment percentage.

REGIONAL TRIAL CENTRES

Hutchinsons
Helix and Regional
Trial Centres

Summer Open Days

Here is a preview of our activities at the forthcoming Helix and Regional Trial Centre summer open days taking place around the country.

Our Regional Trial Centres

At nine combinable crop trial centres around the country, there will be demonstrations and presentations from our specialists focusing on **"knowing your numbers"**

- working with and managing your farm data, to help you understand what you put in and what you get out.
- Which cereal variety is right for your situation?
- Understanding your farm business with **Omnia**, the next generation farm management system
- Implementing the Sustainable Farming Incentive (SFI)
- How healthy is your soil and how can you measure/ monitor and manage it?

Helix

Farms

Technology

Variety demonstrations

Most locations will feature treated and untreated comparisons of a wide range of new and established winter wheat and winter barley varieties, providing a great opportunity to evaluate agronomic performance under local conditions and soil type. Variety selection to meet market demands and to perform well on your own farm is a major decision and there is an increasing focus on using genetics to ease crop management.

Omnia Digital Farming

Specialists will be able to practically demonstrate our next generation farm management system, Omnia, including the forthcoming Omnia with **EasyPlan** upgrade, which focusses on farm management records, gross margin analysis, recommendations, and stock levels.

Maximising the Sustainable Farming Incentive (SFI)

Our environmental team will explore ways growers can boost environmental benefits from unproductive areas of land and successfully integrate the latest SFI options on farm, to maximise income by applying the right option in the right place.

REGIONAL TRIAL CENTRES

Our Helix Technology Farms

Our Helix farms will also feature many of the above topics under a core message of "measure to manage" - using technology and innovation to analyse your farm business, to maximise output.

The demonstrations at six Helix farms around the country show how the hosts are practically and successfully collaborating with new technology and specialists to improve their business decision making. At these sites we are continuing to evaluate new technologies, to develop beneficial business tools, for the wider farming community, that have been tried and tested.

This summer's programme of events at Hutchinsons Helix and Regional Trial Centres promises an exciting insight into the ways farm income can be improved.

Crop Production Specialists

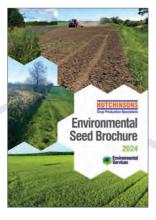
Helix Demonstration Farms and Regional Trial Centres

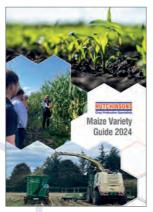
Locations & Events Summer 2024


- Carlisle Tuesday 11th June
- 2 Alnwick Wednesday 12th June
- 3 Grayingham Tuesday 2nd July
- 4 Harleston Thursday 4th July
- 5 Stowbridge Friday 28th June
- 6 Brockhampton Wednesday 10th July
- 7 Castle Donington Tuesday 25th June
- 8 Bourne Thursday 13th June
- DKB Tuesday 25th June
- 10 Helix National Technology Farm Tuesday 2nd July
- 11 Helix Yorkshire Thursday 13th June
- 12 Helix Oxfordshire Wednesday 19th June
- 13 Helix Northumberland Tuesday 25th June
- 14 Helix Cornwall 17th/18th June evenings
- 15 Helix Wiltshire Thursday 20th June
- 16 Helix Fife Thursday 18th July
- 17 Potato Demonstration Event Tuesday 9th July

Check our website

www.hutchinsons.co.uk/event for more information and to reserve your place.




Scan the QR code for more information on our specialist seed mixes:

- Environmental mixes
- Catch and cover crop mixes
- Maize varieties.

Ensure you get the best mix for your situation and speak to us before deciding.

Spring Cropping

OVERVIEW

Cereals

In spring 2024 we have seen a high demand for spring cereals, where available, after the heavens opened at the end of October and subsequently are yet to fully turn the tap off! Unfortunately, we know that when it happens, then nature will generally balance the books.

Spring Barley

LAUREATE is still the undoubted number one in the marketplace, outselling its competitors whilst offering dual purpose end markets, as does LG DIABLO but not as widely grown. RGT PLANET has seemingly had its day as its market share continues to decline. It will still have support from growers who have seen very consistent performance but accept it is on the wane. FIREFOXX now also offers full approval for malt and distilling.

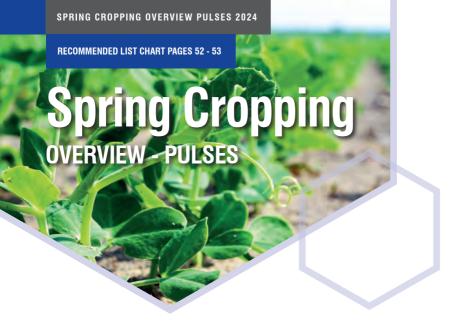
SKYWAY offers potential brewing ability and has full approval whilst **SY SIGNET** and **SY TENNYSON** are available with provisional approval at the time of writing.

Feed variety **HURLER** is the only true feed variety recommended, but arguably the malting varieties offer better yield. **FAIRING** offers grain distilling in a specific category.

BOUNTY, **GAMBIT** and **BELTER** all under test for malting look to be offering some competition but until approved will be lesser in demand.

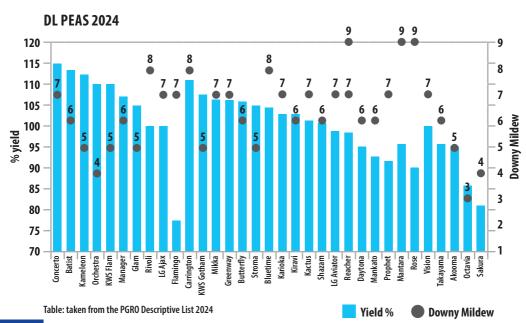
Spring Wheat

KWS HARSUM and **KWS LADUM** are the group 1 offer, **KWS LADUM** has no major disease weaknesses, with high resistance to mildew, brown rust and Septoria tritici. It will be a major consideration for next spring.


KWS ALICIUM now supersedes **KWS COCHISE** with new variety **WPB MYLO** providing an alternative in the group 2 sector which is dominated at present by the KWS portfolio.

WPB ESCAPE and KWS FIXUM since its arrival within the sector are the current market leaders, with new highest yielding SEW19-3003SW1 providing a snappy named edition to the group 4's from COPE SEEDS with highest yield to date at 107.

Spring Oats


Little change for **WPB ISABEL**, which is the current market leader, with **MELRIN** making significant headway. **CANYON** still has support within the market place. Essentially the key to growing spring oats is rainfall in June (key for all oat crops) and timeliness of harvest. New variety **ASTERION** will continue under evaluation and has good disease resistance.

Combining Peas

A new classification has been added to the descriptive list for 2024 in the form of **Pinks** although only one variety is currently in this classification. The changes from last year remain in place with Large Blues now classified as **Greens** and Whites classified as **Yellows**. The **Maple** and **Marrowfats** classifications remain unchanged. **There have been six new additions again this year to the descriptive list.**

Pinks: New category for 2024.

Visibly different from Yellows with a light pink colouration. Currently only one variety in this category.

Flamingo (78) LS Plant Breeding maintains
its top yielding variety status (yielding 6% above its
nearest rival). It also the highest rating along with
Bluetime for downy mildew (8). A small-seeded variety.

Greens: Remain the largest sector if gauged by the seed production at around 50% of the market.

There are **two new additions** this year, these are **Reacher** (IAR Agri) & **Shazam** (Senova).

- Carrington (111) LS PIPlant Breeding maintains its top yielding variety status (yielding 4% above its nearest rival). A small-seeded variety.
- KWS Gotham (107) KWS.
- Mikka (106) & Greenway (106) IA Agri.
 Both Y5 data with consistent yields year on year and very similar agronomics.
- **Butterfly (106)** LS Plant Breeding. Dropped back in terms of yield, but still an early maturing variety.
- **Stroma (105)** LS Plant Breeding. Drops back again on yield for the second year by 2%.
- Bluetime (104) LS Plant Breeding (2018).
- Karioka (103) & Kiravi (103) Senova.
- Kactus (102) Senova.
- Shazam (101) Senova. NEW VARIETY 2024
- LG Aviator (98) Limagrain.
- Reacher (97) IAR Agri. NEW VARIETY 2024

Marrowfats: the second largest sector has now been overtaken by the Yellows, with only one new addition this year, **Vision** Elsoms Seeds.

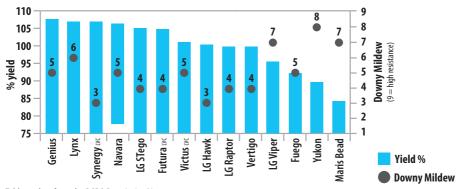
- Vision (100) Elsoms Seeds. New variety this year and straight in as the highest yielding in the category and strongest downy mildew rating at 7.
- Takayama (96) LS Plant Breeding. Second highest yielding on the list, just losing out to Vision in both yield and DM rating.
- Akooma (95) LS Plant Breeding.
- Octavia (86) IAR Agri continues to year five of trials, has a medium straw with a better standing ability than most marrowfats, although late maturing with low rating for downy mildew. Highest rated protein content.
- Sakura (86) Daltons entered the list back in 2008.
 Its agronomics are good, regarding quality, although not the boldest seed relative to its counterparts.

Yellow: Three NEW additions for 2024, Concerto (LS Plant Breeding), **Batist** (Senova), **KWS Flam** (KWS).

- Concerto (115) LS Plant Breeding. NEW VARIETY.
 Enters the category strongly as the highest yielding variety, 3% higher than Kameleon the previous highest yielding. High Downy Mildew rating (7) although lowest protein content in category.
- Batist (113) Senova. NEW VARIETY. Second highest yielding in first year. Similar to Concerto as second lowest protein content.
- Kemeleon (112) Senova. Knocked off the top spot, but still a high yielding variety. Once again, higher yielding, lower protein.
- Orchestra (110) LS Plant Breeding.
 Lowest downy mildew resistance (4).
- KWS Flam (102) KWS. NEW VARIETY. A moderate yielder with the tallest straw length in the category.
- Manager (107) KWS.
- **Glam (105)** Senova.
- **Rivoli (100)** Senova. Highest downy mildew resistance (8).
- LG Ajax (100) Limagrain.

Maple peas:

 Mantara (95) Limagrain and Rose (90) Daltons remain the only two recommended varieties in this category. Mantra has slightly smaller pea size and protein content and a later maturing variety, otherwise better agronomics, it has shorter straw, is a better stander and resistance to pea wilt. Both have excellent ratings for downy mildew at 9.



Three new spring bean varieties have been added to the list this year.

The varieties are **Synergy** Saaten Union, **Navara** Senova & **LG Hawk** Limagrain.

DL SPRING BEANS 2024

Tables: taken from the PGRO Descriptive List 2024.

Pale Hilum

Genius 108 LS plant breeding. For the second year since joining the list, it is the highest yielding variety. It has comparable agronomics to Lynx.

Lynx 107 LS plant breeding. Remains "joint" highest yielding variety for 2024. One of the best varieties for Downy mildew. Has performed well over the years since joining the list in 2016.

Synergy *LVC* **(107)** Saaten Union. **NEW VARIETY 2024.** A Low Vicine and Low Convicine variety (introduced 2023). It has joined the list as joint second highest yielding, with good protein content (28.2), however, joint lowest downy mildew resistance in the category at 3.

Navara (106) Senova. **NEW VARIETY 2024.** Good yield for a first-year variety, moderate agronomics across the board.

LG Stego (105) Limagrain.

Futura LVC **(104) & Victus** LVC **(102)** LS Plant Breeding. Both LVC Varieties added in 2023.

LG Hawk (101) Limagrain. **NEW VARIETY 2024.** Joint lowest downy mildew rating (3).

LG Raptor (99) Limagrain & **Vertigo (99)** LS Plant Breeding. Vertigo one of the oldest varieties on the list, first added 2013.

LG Viper (96) Limagrain. Good downy mildew resistance (7) and highest protein content (28.6).

Fuego (93) Limagrain. Oldest variety in category, first added in 2005! Mainly used as control in trials, but still requested on farm.

Yukon (89) LS Plant Breeding. Lowest yielding but highest downy mildew resistance (8).

Maize Variety Options

Demand for maize seed in the UK is likely to remain high as it is used for forage, AD feedstock and grain.

Our portfolio is selected from material produced by the top breeders, suitable for the British climate. Supplier performance data is supplemented by our regional trials and feedback from our national network of agronomists. This enables us to offer independent advice on the range of varieties best suited to individual farm location and conditions.

We provide varieties from all of the main maize breeders, varieties are selected for their consistency, yield, quality and agronomics.

Best-selling varieties for 2024 by maturity class

2024 by ma	turity ciass	FAO	FORAGE	BIOGAS	GRAIN
Very early	KWS TEMPRANO	150	✓		
maturing	RGT DUXXBURY	160	✓		
varieties	P7179	165	✓	✓	V
Early	PROSPECT	170	~	V	V
maturing	KWS AUTENS	170	V	V	V
varieties	ABILITY	180	V	V	
	P7326	180	V	V	V
	P7034	185	V	V	V
	KWS ANASTASIO	180 / 190	V	V	V
Intermediate	P7647	190/200	V	~	
maturing	DK2684/DK3218	190 / 200	V	V	
varieties	MOVANNA	210	V	V	
	KWS KEOPS	210	V	V	
	MANTILLA	215	V	V	
	P7948	220	V	V	V
Late maturing	NEUTRINO	230	V	V	
varieties	PETROSCHKA	230	V	V	
	AMAROC	240	V	V	

The next generation farm management system.

Omnia is a revolutionary cloud based system that analyses information from a variety of sources.

With all your information in one place, Omnia allows you to make efficient management decisions and save time.

TerraMap produces the highest resolution soil mapping layers at over 800 data reference points per hectare.

We can help you understand your data and create tailored management and variable rate plans quickly and easily.

Understand your soil and make soil management decisions that optimise crop nutrition and productivity.

Environmental Services

agri-environment opportunities available, including Sustainable Farming Incentive, with our practical advice

Agroecology Services

Deliver management plans focusing on soil and plant health to produce profitable crops with minimal, targeted inputs, whilst delivering an uplift in biodiversity.

and support.

Farm Business Consultancy

We appraise your business to implement change and increase profitability, building a business that's fit for your future.

Plan the best way forward to benefit from the

Measure and manage carbon on your farm. TerraMap provides an accurate baseline measurement of carbon in the soil and Omnia is unique in providing the ability to map carbon use efficiency per ha or per tonne.

Whatever your question, we have the answer. Speak to us and see how we can help you.

Scan the OR code to find out more.

Forage Options

Grass Wise - Quality Grass Seed

Fastgrass

A short-term mixture for up to 18 months productivity. Will produce large volumes of silage from a high input system with a winter grazing option. Suitable for any livestock class and an excellent choice for short term grass break in arable rotation.

Clamp Buster

A highly productive short term mixture suited to high input, intensive systems relying on large volumes of high quality forage. CLAMP BUSTER is suitable for red meat and dairy systems which can take advantage of long growing seasons.

Clamp Buster red

Red Clover has been added to this mixture for use with less intensive fertiliser regimes. CLAMP BUSTER RED produces large volumes of high protein silage with an aftermath ideal for lamb finishing.

Suppressor

Suppressor is a flexible short-term grass seed option created by the HLH Grasswise and Technical Teams to out compete and suppress blackgrass in arable rotations.

Super Sward

SUPERSWARD is an intensive 3 – 5 year ley, which expands the shoulders of the season for those who can utilise it. Up to 3 cuts and possible grazing for any livestock class; this ley will yield 10% more than a perennial based ley under a higher nitrogen system.

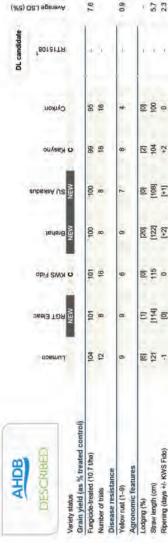
EMERALD is a flexible long-term perennial ryegrass ley suitable for intensive dairy, beef or sheep systems wishing to make use of grass for both grazing and silage. An early bite is ideal for lambing or calving turnout.

Complies with NUM2

Emerald plus

A flexible long-term ley suitable for dairy, beef or sheep systems wishing to make use of grass for both grazing and silage but with a reduced reliance on bagged nitrogen. An early bite is ideal for lambing or calving turnout.

Gold


A muti-purpose, long term mixture for dairy, beef or sheep systems. Varieties included provide season long growth and timothy is added for extra sole and fibre.

Complies with NUM2

Gold plus

A muti-purpose, long term mixture for dairy, beef or sheep systems. Varieties included provide season long growth and timothy is added for extra sole and fibre. The addition of white clover reduces reliance on bagged Nitrogen and improves intakes and protein for stock.

RECOMMENDEDLISTS Winter triticale Descriptive List 2024/25

10.9

10.9

73.8

10.5

9.69

73.4

Dank

Nord

Sen Sen

Sen

RAGT

Sen

Status in DL system

UK contact

Year first listed

DL status

Breeder/UK contact

Specific weight (kg/hl) Protein content (%)

Grain quality

13

2 2

2 2

7

24 P1

2 3

Varieties no longer listed: Belcanto, SU Libonous, Temuco, Tender PZO and Tribeca.

The data in this table is provided for information only and does not constitute a recommendation.

On the 1–9 scale, high figures indicate that a variety shows the character to a high degree (e.g. high resistance).

Candidate varieties will be considered for the DL 2025/26.

an abuser wateres will be considered by the Dr. Aukanao.

Data cannot be published as variety has not completed GB and NI Variety Lists testing.

C = Yield control

[] = Limited data P1 = First year of listing P2 = Second year of listing Dall = Dalton Seeds (daltonseeds.co.uk)
Dank = Danko Hodowla Roslin, Poland (danko.pl)

Desp = Maison Florimond Desprez, France (florimond-desprez.com)
Hod = Hodowla Roslin Strzelce, Poland (hr-strzelce.pt)
Lant = Lantmannen SW Seed BV (lantmannen.com)

LSD = Least significant difference.
Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence level

Nord = Nordssal, Germany (nordssal, de)

RZn = RAGT, Famor (ragt.co.ulk)

RAGT = RAGT Seeds (ragt.co.ulk)

Sen = Senova (senova.ult.com)

SU = Saaten Union UK (saaten-union.co.ulk)

Winter Rye Descriptive List 2024/25 ALE RECOMMENDEDLISTS

Jobj
DESCRIBED

AUDD															DF cal	. candidates		(%
DESCRIBED	KM2 Bot.	KWS Tayo	KWS Gilmor	sonsitaA	isese US	KWS juspirator	SU Perspectiv	SU Karlsson	KWS Setafino	SU Performer	biviA US	Xibne8 US	Poseidon	LesenyH	KMS Embhor	KWS Baridor	KWS Curator	Average LSD (5%
Variety type Variety status	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid		Hybrid	Hybrid	Hybrid	
Grain yield (as % treated control)																		
Fungicide-treated (10.2 tha)	104	104	104	104	103	103	102	102	100	100	100	26	36		[103]	[100]	[26]	5.3
Number of trials	14	19	00	8	19	60	80	00	19	19	19	18	18	-0	3	e	60	u.
Disease resistance																		
Brown rust (1–9)	m	1	Z	[3]	4	12	4	[7]	1	4	2	2	n	٠	X	×	ě	3.0
Agronomic features																		
Lodging (%)	[20]	E	Ε	[8]	[13]	[16]	[14]	[9]	[11]	[33]	[41]	[15]	E	ď	[14]	[31]	[35]	ű,
Straw length (cm)	129	131	[131]	[130]	131	[129]	[131]	[135]	132	132	137	134	132	3	[129]	[134]	[135]	9.9
Ripening (days +/- SU Performer)	0	Ŧ	0	0	0	0	0	0	0	0	0	0	7		Ξ	[+1]	[+1]	1.6
Grain quality																		
Protein content (%)	8.8	9.0	8.9	9.6	8.6	8.6	8.9	9.2	8.9	9.0	8.9	9.5	9.7	6.	[8:0]	[8.4]	[8.4]	0.4
Hagberg Falling Number	236	248	251	181	222	265	234	230	256	218	183	194	165		[234]	[229]	[231]	26.1
Specific weight (kg/hl)	75.7	76.3	77.2	0.77	77.4	75.1	77.3	77.9	76.5	77.1	76.2	6.97	75.6		[75.9]	[76.1]	[77.4]	1.0
Breeder/UK contact																		
Breeder	KWSGmbh	KWSGmbh	KWSGmbh	NS	Hybro	KWSGmbh	Hybro	Hybro	KWSGmbh	Hybro	Hybro	Hybro	NS	Hybro	KWSGmbh	KWSGmbh	KWSGmbh	
UK contact	KWS	KWS	KWS	Sen	SU	KWS	ns	SU	KWS	SU	SU	SU	Dalf	SU	KWS	KWS	KWS	j.
Status in DL system										-								
Year first listed	23	22	24	24	22	24	24	24	21	17	21	22	21			0	7.	ä
DL status	P2		P1	Ы	Y	4	P1	٦		8	2	*	Ŷ					ž

Varieties no longer listed: SU Eirond and SU Pluralis. The data in this table is provided for information only and does not constitute a recommendation.

On the 1–9 scale, high figures indicate that a variety shows the character to a high degree (e.g. high resistance). Candidate varieties will be considered for the DL 2025/28.

Data cannot be published as variety has not completed GB and NI Variety Lists testing.

P1 = First year of listing P2 = Second year of listing C = Yield control

KWSGmbh = KWS Lochow GmbH (kws-uk.com) NS = Nordic Seed, Denmark (nordicseed.com) Dalt = Dalton Seeds (daltonseeds.co.uk) Hybro = Hybro, Germany (saaten-union.co.uk) KWS = KWS UK (kws-uk.com)

LSD = Least significant difference
Average LSD (5%); Varieties that are more than one LSD apart are significantly different at the 95% confidence level

Sen = Senova (senova.uk.com) SU = Saaten Union UK (saaten-union.co.uk)

VARIBBE FRD (8%)

Winter Oilseed Rape 2024/25

RECOMMENDEDLISTS

YIELD, QUALITY, DISEASE RESISTANCE AND AGRONOMY

AHDB	ibemiA 0J	mebeoA 6J	enilebA &J	BupuT	ninglod	LG Aucklan	ecittA	VernuM	sере∨ <u>‡</u>	obessedmA	LG Wagner	elletuA	LG Aviron		FG Adonis	EOET9	A 1 100 A
Variety type	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybrid	Hybod	Hybrid	Hybrid	Hybrid		Hybrid		Hybrid	Hybrid Hybrid
Scope of recommendation	*	NO.	- NY	M	EW	EW	ž	EW	25	EW	×	'n		×	UK EW		. EW
Variety status	WEW	NEW	NEW		MEM					0		u		i			
Gross output, yield adjusted for all content (% treated	ment (% treat	ed control	-00														
United Kingdom (5.1 tha)	107	106	106	906	105	900	105	302	104	100	103	100	٩	285	101 -101		101
EastWest region (5.0 tha)	100	106	105	306	- 106	100	105	105	104	186	102	303	7	205	101 101		101 101
North region (5.0 tha)	107	107	108	300	(Mag)	100	104	200	102	101	108	305	8	100	100		100
Seed yield (% treated control)																	
United Kingdom (4.8 tha)	106	106	106	107	100	101	100	900	104	整	103	103	禁		3: 100	1004	100 100
EastWest region (4.7 ths)	106	106	106	107	.103	105	100	106	104	104	201	103	183	14			100
North region (5.5 tha)	101	107	108	107	(tood)	102	104	103	102	102	108	103	20	181	28	39 100	99 100 92
Untreated yield (% unfreated control) - UK	-UK																
Gross output (5.3 tha)			4	103		106	102	105	106	103	1106	104	105		102		100
Seed yield (4.9 tha)	٠			104	-	101	102	106	105	100	BOLL	104	107		101	101 100	
Disease resistance				١		١	١	ì					ı				
Light leaf spot (1–9)	1	2	+	4	ю	#	4	J.	1	2	+	1	*		+	1 1	1 1 1
Stem conter (1-9)	ID.	4	MA	×	. 1	40	jer-	iio:	ò		N/A	Are.	10		10	40	9
Vertolium	1		H	-	M	141	100	Ne.	10	100	区	H	区		PE.	- Sed	
Tum	æ	œ	DE.		æ	æ	Di:	¥		æ	DC.	ne	Œ		œ	Œ	
Agronomic features																	
Resistance to lodging (1-9)	10.81	62	land.	15.0	10.00	D-8	100	1018	医道	18.01	lored	16世	[12]		10.3	6.0 医边	Î
Stem stiffness (1-9)	60	60	60	80	in.	1		m	60	60	60	1	*		60		
Shortness of stem (1-9)	10	un	10	9	w	10	60	9	60	40	49	40	10		ω	90	'n
Pant height (cm)	150	153	160	142	143	148	9	148	143	146	142	143	285		140	140. 157	
Earliness of flowering (1–9).	10	1	1	00	I	+	H	٠	7	1	-	1	80		1	7 5	7 5 7
Earlness of maturity (1-9)	in	MD.	MY	W	*	M	MT	kn	10	40	MF	10	100		in	40	40
Pod shaller resistance	œ	œ	æ	ţ	į	œ	ĸ	·		œ	æ	æ	œ		1		* *
Seed quality (at 9% moisture)																	
Oil content, tungicide-treated (%)	455	652	614	44.4	936	455	453	589	454	44.7	45.0	443	44.4		45.1	451 457	ĥ
Glucosmolate (umoliti)	17.6	181	58.7	10.4	140	12.2	450	1111	910	10.5	11.7	102	11.2		0.3		8.0

2

6 90 0.3 32 9 9

Varieties no longer listed: Crossft, DK Expectation, DK Imprint CL, Permining, LG Antigua, PT279CL, Respect and V 316 OL.

High Enucle Acid (MEAR) and semi-dwarf (SD) varieties are described. Data is provided for information only and does

They are believed to be resistant to common strains of clubroot, but his has not been verified in PL tests. These varieties should only be Herbicide-falorant varieties have a specific recommendation for tolerance to specific imdazsimone herbicides (a Clearfield Cushoof-resistant varieties have a specific recommendation for growing on land infected with

used in line with AFDB obdroot mana

The larget spring plant population is 40 plantsm? for RL track Maximum seed rate is 70 seedsm? and may be lower if conditions On the 1-9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance)

contents are taken from the GB and NI Variety Lists trial data

heament breefs at co-bosted state is calculated from a subset of this locations where both treated and unitessed treat are presented as a percentage of the treated control varieties at these sites only.

44

Winter Oilseed Rape 2024/25

YIELD, QUALITY, DISEASE RESISTANCE AND AGRONOMY

AHDB RECOMMENDEDLISTS

Average LSD (5%)

2.3

0.6 0.7 1.5 0.4

40 . . 54 7. 1

Winter Wheat 2024/25

RECOMMENDEDLISTS

YIELD, DISEASE RESISTANCE AND AGRONOMY

Crusoe RGT Illustrious KWS Extase KWS Ultimatum Mayflower Bamford Mayflower RGT Wilkinson RGT Wilkinson Mayflower	UK UK UK UK UK UK UK UK UK E	NEW *		95 95 101 101 100 97 106 100 99 99	95 95 101 101 99 97 105 101 100 100 98	96 96 96 96 102 101 101 97 107 99 99 98 99 99	94 94 99 101 99 96 [105] 99 100 98 [102]		66 75 82 93 90 90 91 92 83 80 78 87 83	7 6 7 7 8 7 [6] 7 7 3 [6]	3 8 7 7 9 9 9 7 7 9 8 8 7	 3 5 6 6 6 5 6 6	6.3 5.9 7.4 6.5 7.3 8.9 6.7 5.5 5.7 6.1 6.0	5 60 4 6 6 50 60 50 5 5 4	7 6 6 6 6 [5] 6 6 7 [6]	cc cc	7 8 8 6 7 8 8 6	7 8 7 8 7 7 8 7 8 7	2 1 3 6 2 6 3 1 2 2 6	2 0 2 4 2 4 4 1 4 2 3	87 84 91 92 87 85 90 90 84 93 87 86 85	77 81 86 77 78 83 83 78 85 80 79	H H + + + + + + + + + + + + + + + + + +
SY Cheer	UK UK	H				96 86			84 66		7 3										91 87		
KMS Z ^{ka} ll	¥	2	Fungicide-treated grain yield (% treated control)			66	Ī	Untreated grain yield (% treated control)	7.1	Ī	e							00	-		98		

Varieties no longer listed: Elation, Elicit, KWS Fietly, KWS Gulam, KWS Jackal, KWS Siskin, LG Phince, Merit, RGT Saki and Theodore.

The table KWS Batawi was also accordictly artiety but is no rougher listed.

SY Cheer is a provisional UKFM Group 1 variety. This rating will be confirmed in Spring 2024 once commercial assessments have been completed.

RGT Wolverine has a specific recommendation for resistance to Barley yellow dwarf virus (BYDV), Resistance to BYDV has not been verified in RL tests.

Comparisons of varieties across regions are not valid. On the 1–9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance).

1.15

Winter Wheat 2024/25

RECOMMENDEDLISTS

YIELD, DISEASE RESISTANCE AND AGRONOMY

Average LSD (5%)

2.7 2.7 3.0 3.4

0.6 0.7 1.5 0.4

1.5

r = Young plant is resistant to yellow rust as shown by UKCPVS tests and RL trial data s = Young plant is succeptible to yellow rust as shown by UKCPVS tests and RL trial data @ = Belleved to carry the Port Rendezvous resistance gene to eyespot, but this has not been verified in RL tests

LSD = Least significant difference Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence level

R = Believed to be resistant to the trait, but this has not been verified in RL tests

RECOMMENDEDLISTS Winter Barley 2024/25 🔤

YIELD, DISEASE RESISTANCE, AGRONOMY, MAIN MARKET OPTIONS AND GRAIN QUALITY

Buccos Electrical Continue Continue	AHDB	neer	ur		ellever	lofiq	би		aibis		xne	nistnu	əjzz	llawic		BE LSD (5
UK UK<	RECOMMENDED Forduse groun	Buccal	Electru	Craft	₽⊃ อา	re cs	intdgi.l	siviloa	KM2 J		Bordes	ге мо	re D¤	KM2 C	Valerie	Ανοτο
C C C C C C C C C C	Scope of recommendation	ž	Ä	ň	ž	Š	NK	NK	ш			UK	UK	ž	K	
98 96 93 100 100 100 100 100 100 100 100 100 10	Variety status Fungicide-treated grain yield (% treate	ed control)	U	U	ļ	NEW			U							
100 96 93 107 104 104 104 105 104 102 103 193 99 99 99 99 99 99	United Kingdom (9.8 Vha)	66	96	93	106	106	103	103	103	103	102	101	101	100	66	2
946 946 948 948 948 948 948 1458 1403 1402 1403 1404 1401 </td <td>East region (9.5 t/ha)</td> <td>100</td> <td>96</td> <td>93</td> <td>107</td> <td>107</td> <td>104</td> <td>104</td> <td>104</td> <td>105</td> <td>104</td> <td>102</td> <td>103</td> <td>66</td> <td>66</td> <td>6</td>	East region (9.5 t/ha)	100	96	93	107	107	104	104	104	105	104	102	103	66	66	6
100 86 83 104 105 103 103 101 102 101 101 101 89 100 81 80 80 80 80 80 80 80	West region (9.7 tha)	86	96	93	105	[103]	102	102	101	101	100	102	66	100	26	4
Orificol) 87	North region (10.5 t/ha)	1	96	93	104	[105]	103	103	103	101	102	101	101	66	100	6
87 80 80 85 86 85 86 87 84 88 87 74 88 87 74 88 87 74 88 87 74 88 87 74 88 87 74 88 77 74<	Untreated grain yield (% treated contr	ol)					Ì		Ì		ı			ŀ	I	
6 6 6 6 6 7 7 7 7 6 8 8 5 6 6 6 6 6 5 3 7 7 4 7 7 7 7 7 8 8 8 6 7 6 6 7 8 7 8 7 4 8 7 7 7 7 8 8 8 6 7 6 7 6 7 8 7 4 8 8 8 6 7 6 7 8 7 7 4 8 8 8 8 8 7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	United Kingdom (9.8 t/ha)	87	80	80	06	88	06	88	82	98	82	84	88	83	74	4
Fig. 17 Fig. 18 Fig.	Mildew (1-9)	10	150	9	7	100	40	α	ıc	9	100	10	ıc	6	7	-
The control of the	Brown rust (1–9)	000	1	7			00	0 00	9	1	9	1	0 00	2	4	0
Fig.	Rhynchosporium (1-9)	7	2	9	9	9	9	9	9	2	4	2	7	9	9	-
R R	Net blotch (1-9)	9	2	c)	9	2	9	9	9	2	5	4	2	2	2	0
77 77 8 8 191 77 6 191 8 8 8 7 7 7 8 8 8 7 7	BaYMV1 & BaMMV	K	R	R	ď	ĸ	×	ď	ĸ	В	×	ĸ	ď	ĸ	ď	
	BaYMV2	1	ÿ		ů.	x	A	ï	,	i	i,	ï	ż	×	ď	
	Agronomic features															
1-9 7	Resistance to lodging without PGR (1-9)	[7]	7	80	[8]	[2]	9	[8]	8	8	80	1	7	8	8	-
16 4 2 17 15 15 15 15 15 17 1 1 5 4 2 2 2 3 3 3 3 3 3 3	Resistance to lodging with PGR (1-9)	1	1	80	7	1	9	8	8	8	00	1	7	80	00	-
3 3 1 1 2 2 2 5 1 0 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1	Lodging without PGR (%)	[9]	4	2	[2]	[3]	15	[2]	e	ē	-	2	4	2	2	
100 102 899 833 894 85 833 87 95 85 84 85 89 89 85 89 89 89 89 89 89 89 89 89 89 89 89 89	Lodging with PGR (%)	60	3	,	2	2	2	-	0	1	-	e	6	-	-	
14 92 91 86 85 89 90 86 84 85 85 86 87 87 14 9 10 8 11 13 15 6 8 9 27 7 8 8 14 -1 0 0 0 -1 0 0 0 0 1 1 1 0 15 15 15 15 15 15 15	Straw length without PGR (cm)	100	102	66	93	[94]	95	93	16	95	96	94	92	96	95	3
4 9 10 8 11 13 15 6 8 9 27 7 8 8 9 14 14 15 15 15 15 15 15	Straw length with PGR (cm)	91	92	91	98	82	88	90	98	84	85	85	98	87	87	2
High P F F F F F F F F F F F F F F F F F F	Brackling (%)	4	6	10	80	11	13	15	9	8	6	27	7	80	89	
108e P F F 69.6 69.7 69.9 71.4 69.9 68.8 69.9 70.1 69.3 70.7 68.9 68.9 70.6 2.2 2.4 2.3 1.7 1.9 1.9 1.3 1.7 1.6 1.3 1.9 2.0 1.7 0.8 6.4 6.8 6.8 4.5 5.2 5.4 3.3 5.2 4.8 3.7 5.7 5.9 5.4 2.1 1.68 1.71 1.69 <	Ripening (days +/- KWS Orwell)	¥	7	0	0	0	۲	0	0	0	0	٦	+	0	7	-
Hee P F F F F F F F F F F F F F F F F F F	Main market options															
69.6 69.7 69.9 71.4 69.9 68.8 69.9 70.1 69.3 70.5 70.7 68.9 68.9 70.6 2.2 2.4 2.3 1.7 1.9 1.9 1.3 1.7 1.6 1.3 1.9 2.0 1.7 0.8 6.4 6.8 6.8 4.5 5.2 5.4 3.3 5.2 4.8 3.7 5.7 5.9 5.4 2.1 1.68 1.71 1.68	MBC malting approval for brewing use	a	ш	14.	0	0	ā	7	ų.	á	á	i	ì	0	ű	
686 687 689 774 689 688 689 704 683 705 707 689 689 706 706 22 24 23 17 19 19 13 17 16 13 19 20 17 08 64 68 68 68 45 52 54 33 52 48 37 57 59 54 21 168 171 169	Grain quality															
22 24 23 17 19 19 13 17 16 13 19 20 17 08 64 68 68 45 52 54 33 52 48 37 57 59 54 21 168 171 168	Specific weight (kg/hl)	9.69	1.69	66.69	71.4	6.69	8.89	6.69	70.1	69.3	70.5	7.07	68.9	6.89	70.6	0
168 171 188	Screenings (% through 2.25 mm)	2.2	2.4	2.3	1.7	1.9	1.9	1.3	1.7	1.6	1.3	1.9	2.0	1.7	0.8	0
1.68 1.71 1.68 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Screenings (% through 2.5 mm)	6.4	8.9	6.8	4.5	5.2	5.4	3.3	5.2	4.8	3.7	2.5	6.5	5,4	2.1	F
	Nitrogen content (%)	1.68	1.71	1.68	r	œ.	u	ı	t-	1-	į.	r	œ		0	0
	Malting quality															

KWS Feets and SY Buzzard have a specific recommendation for blerance to Barley yellow dwarf virus (BYDV). Tokerance to BYDV has not been verified in RL tests. Glowers are surfaced for the surface of th Varieties no longer listed: Belmont, California, Funky, KWS Cassia, KWS Hawking and Surge.

48

RECOMMENDED LIST CHARTS

Winter Barley 2024/25 AEB RECOMMENDEDLISTS

YIELD, DISEASE RESISTANCE, AGRONOMY, MAIN MARKET OPTIONS AND GRAIN QUALITY

yield (% treated control) Treated control	Ontrol) Reg 83 87 91 87 88 87 91 87 82 88 82 88 84 155 165 165 165 165 165 165 165 165 165	AHDB	hunderbolt*	*nnsdagni	*notegni	suyon*	#	*nidqə	oka _#	"bıszzu	Feeris	
UK UK<	UK UK<	Fridateo granin	T YS	SA K	SA K		TheB		Bazo	SA B	KMS	
Ordinol) 107	The control) 107	Cild-use group		ŀ								_
107 107 107 108 108 104 104 103 105 105 105 105 105 105 105 104 104 103 108 108 105 105 105 105 105 105 105 105 105 105	ontrol) 107 107 107 108 108 104 104 103 104 104 103 108 108 106 105 105 105 105 104 104 103 108 108 107 107 108 108 108 108 108 108 108 108 108 108	Scope of recommendation Variety status Fungicide-treated grain yield (% treate	uk • d control)	≚ υ	ž	ž	¥	ž	¥	Sp	တ္တပ	
106 106 105 105 105 105 104 104 104 109 108 107 107 108 106 105 105 105 106 109 109 109 109 109 109 109 109 109 109	106 106 106 105 105 105 104 104 104 107 107 107 108 106 105 105 105 106 107 108 108 105 105 105 106 1102 104 [101] 107 107 107 106 106 105 105 105 106 1102 106 1102 106 1102 106 1102 106 1102 106 1102 106 1102 106 1102 106 1102 1102	United Kingdom (9.8 t/ha)	107	107	107	106	105	104	104	103	102	
108 107 108 106 104 102 104 1101 102 107 107 106 106 105 105 105 106 1102 100 88 83 87 91 87 82 83 82 84 8	ONTICOL) 88 83 87 91 87 92 83 82 84 7 7 7 7 7 6 6 6 7 7 7 7 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	East region (9.5 t/ha)	106	106	106	105	105	105	104	104	102	
107 107 106 106 105 105 106 [102] 100 88 83 87 81 91 87 92 83 82 84 7 7 7 7 6 6 7 7 7 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	107 107 106 106 105 105 106 [102] 100 88 83 87 91 87 92 83 82 84 6 7 7 7 7 7 6 6 7 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	West region (9.7 tha)	108	107	108	106	104	102	104	[101]	102	
88 83 87 91 87 92 83 82 84 6 5 6 7 7 7 7 7 6 6 6 6 6 6 7 7 7 7 7 6 6 6 6 6 7 7 7 7 7 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 8 8 8 7 7 7 7 7 7 8 8 7 7 8 8 7 7 8 7 7 1 7	7 7 7 7 7 6 7 7 7 7 7 7 7 7 6 6 6 6 6 6 7 7 7 7 7 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	North region (10.5 tha) Untreated grain yield (% treated contr	-	107	106	106	105	105	106	[102]	100	
7 7 7 7 6 7 7 7 7 6 6 6 6 6 6 7 7 7 7 6 6 6 6 6 6 7 7 8 8 7 7 7 8 8 8 7 7 7 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	7 7 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 7 7 8 8 8 7	United Kingdom (9.8 t/ha)	Y2	83	87	91	18	92	83	82	84	
7	T	Disease resistance										
6 5 6 8 6 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 7 7	6 5 6 6 7 7 7 5 6 6 6 6 6 6 6 6 6 6 6 6	Mildew (1-9)	7	7	7	1	9	9	5	9	5	
1	7	Brown rust (1-9)	9	S	9	9	9	1	2	9	9	
6 5 6 6 6 5 6 5 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 5 6 8 5 6 5 7 6	Rhynchosporium (1-9)	7	1	1	9	7	7	7	9	9	
S	R	Net blotch (1-9)	9	2	9	9	2	9	2	7	9	
5 6 6 6 7 [6] 6 7 7 6 7 7 6 7 3 7 3 7 1 1 7 7 1 1 7 1	5 6 6 6 7 [6] 6 [7] 6 8 7 6 8 7 6 7 3 3 1 <td>BaYMV1 & BaMMV</td> <td>ď</td> <td>æ</td> <td>ď</td> <td>ď</td> <td>×</td> <td>ď</td> <td>×</td> <td>æ</td> <td>×</td> <td></td>	BaYMV1 & BaMMV	ď	æ	ď	ď	×	ď	×	æ	×	
5 6 6 6 7 [8] 6 [8] 8 25 15 6 8 7 6 7 7 7 25 15 18 13 5 [10] 11 [11] 2 3 115 116 120 119 113 120 [115] 102 107 106 109 109 104 104 111 107 97 11 11 23 14 10 12 12 11 11 23 14 10 12 12 11 11 23 14 10 12 12 12 13 27 35 26 32 14 12 15 27 19 27 35 26 32 14 174 27 19 27 35 26 32 14 174 <td>5 6 6 6 7 [6] 6 [7] 6 7<td>BaYMV2</td><td>ı</td><td>ı</td><td></td><td>Α.</td><td>r</td><td></td><td>ı</td><td>r</td><td></td><td></td></td>	5 6 6 6 7 [6] 6 [7] 6 7 <td>BaYMV2</td> <td>ı</td> <td>ı</td> <td></td> <td>Α.</td> <td>r</td> <td></td> <td>ı</td> <td>r</td> <td></td> <td></td>	BaYMV2	ı	ı		Α.	r		ı	r		
5 6 6 7 [6] 6 [8] 8 25 15 18 13 5 [10] 11 [11] 2 165 16 13 5 [10] 11 [11] 2 3 107 106 109 104 114 101 11 10 97 18 16 19 11 11 23 14 10 12 19 19 11 12 23 14 10 12 702 702 701 71 68.8 707 68.9 69.0 69.2 20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	5 6 6 7 [6] 6 [8] 8 25 15 18 13 5 [10] 11 [11] 2 145 146 120 149 143 13 5 [10] 17 7 7 107 108 109 104 104 111 107 97 18 16 19 11 11 20 115 10 18 16 19 11 11 20 17 17 19 1 11 20 14 10 0 0 1 702 702 701 71 68 707 69 60 60 20 15 20 11 20 20 1 174 72 5 20 62 33 122 83 14 72 5 9 62 33 122 </td <td>Agronomic features</td> <td></td>	Agronomic features										
(1-4) 6 7 5 6 8 7 6 7 7 6 7 7 7 6 7 7 7 8 7 7 7 7 7	(1-4) 6 7 5 6 8 7 7 6 7 7 7 7 1 8 7 7 7 1 8 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7	Resistance to lodging without PGR (1-9)	5	9	9	9	7	[9]	9	[8]	00	
95 15 18 13 5 100 11 [1] 2 115 116 120 119 113 120 [115] 102 107 106 109 109 104 104 111 107 97 11 0 11 1 1 1 23 14 10 12 11 0 11 1 1 1 23 14 10 12 11 0 1 1 1 1 1 23 14 10 12 11 0 1 1 1 1 1 23 14 10 12 11 0 1 1 1 1 2 3 14 10 12 11 0 1 1 1 1 1 2 3 14 10 12 11 0 1 1 1 1 1 2 3 14 10 12 11 0 1 1 1 1 1 2 3 14 10 12 11 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	95 15 16 13 5 110 11 [1] 2 115 116 120 119 113 120 [115] 102 107 106 109 109 104 111 107 97 11 0 1 1 11 11 23 113 120 [115] 102 11 0 1 1 11 11 23 113 120 [115] 102 11 0 1 1 11 11 23 113 120 [115] 102 11 0 1 1 11 11 23 113 120 [115] 102 11 0 1 1 11 11 23 113 120 112 11 0 1 1 11 11 23 113 120 112 11 0 1 1 11 11 23 113 13 13 13 13 13 13 13 13 13 13 13 1	Resistance to lodging with PGR (1-9)	9	7	S	9	80	1	9	1	7	
115 116 11 8 1 3 5 5 2 3 1 115 115 115 115 115 115 115 115 116 117 117 117 117 117 117 117 117 117	1	Lodging without PGR (%)	25	15	18	13	5	[10]	Ħ	Ξ	2	
115 116 120 119 113 113 120 [115] 1102 1102 1103 1103 1103 1103 1103 1103	115 116 120 119 113 113 120 [115] 110 107 106 109 109 104 111 10 17 97 18 11 11 23 141 10 12 11 0 -1 1 11 23 141 10 12 20 12 702 70.1 71.1 68.8 70.7 69.9 69.0 69.2 20 15 27 19 27 35 26 32 14 72 55 90 62 93 12 83 131 56 1.74	Lodging with PGR (%)	8	4	1	9	F	6	2	2	6	
107 106 109 109 104 114 107 97 118 107 119 107 119 119 119 119 119 119 119 119 119 11	107 106 109 109 104 111 107 97 116 107 117 107 117 117 117 117 117 117 117	Straw length without PGR (cm)	115	116	120	119	113	113	120	[115]	102	
18 16 19 11 11 23 14 10 12 10 0 -1 -1 0 0 0 0 1 0 12 702 702 701 711 688 707 689 680 692 1 20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	gues 702 702 701 711 688 707 689 690 692 72 55 90 62 93 122 83 131 56 77 2859 690 62 93 122 83 131 56 99	Straw length with PGR (cm)	107	106	109	109	104	104	111	107	26	
guse	9 Use 702 70.1 71.1 68.8 70.7 69.9 69.0 69.2 7.2 70.1 71.1 68.8 70.7 69.9 69.0 69.2 7.2 55 9.0 6.2 9.3 12.2 8.3 13.1 5.6 7.2 7.2 55 9.0 6.2 9.3 12.2 8.3 13.1 5.6 7.2 7.2 5.5 9.0 6.2 9.3 12.2 8.3 13.1 5.6 7.2 7.2 8.3 13.1 5.6 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	Brackling (%)	18	16	19	11	11	23	14	10	12	
9 10 2 70 2 70 1 71 1 68 8 70 7 69 9 69 0 69 2 9 1 1 2 5 5 9 0 6 2 9 3 1 2 8 3 1 3 5 6 6 1 1 4 5 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	702 702 701 711 688 707 699 690 692 92 14 72 55 90 62 93 122 83 131 56 999	Ripening (days +/- KWS Orwell)	T	0	4	7	0	0	0	7	0	
9 to 2 702 701 711 668 707 699 680 692 701 20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	9 10 10 10 10 10 10 10 10 10 10 10 10 10	Main market options										
702 702 701 711 668 707 699 650 692 20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	702 702 701 711 688 707 699 690 692 992 701 52 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56 174 56	MBC malting approval for brewing use				-1	-0					
702 702 701 711 688 707 699 690 692 0 20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	702 702 701 711 688 707 699 690 692 692 702 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56 714	Grain quality										
20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56	20 15 27 19 27 35 26 32 14 72 55 90 62 93 122 83 131 56 174	Specific weight (kg/hl)	70.2	70.2	70.1	71.1	68.8	7.07	6.69	0.69	69.2	
72 55 90 62 93 122 83 131 56	72 55 90 62 93 122 83 131 56	Screenings (% through 2.25 mm)	2.0	1.5	2.7	1.9	2.7	3.5	2.6	3.2	1.4	
174	174	Screenings (% through 2.5 mm)	7.2	5.5	0.6	6.2	9.3	12.2	8.3	13.1	9.6	
		Nitrogen content (%)	.0	i	1-	A.	0		b	ò	1.74	0.11
	295.9	Malting quality										

Specific recommendation Yield control Variety no longer under test in RL trials Believed to be resistant to the trait, his has not been verified in RL tests C = Malting Barley Committee Provisional MBC approval Full MBC approval = Least significant difference = Plant growth regulator Second year of listing First year of listing lybrid variety imited data

Recommended for the UK

Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence level

On the 1–9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance). Comparisons of variety performance across regions are not valid.

RECOMMENDEDLISTS **Barley 2024** Mag

NCE, AGRONOMY, MAIN MARKET OPTIONS AND QUALITY

	STA		
	RESISTA		
5	DISEASE		CIBC
	Ď,	AHDB	MIMEN
7	YIEL		RECC

AHOD																			1
RECOMMENDED	кумау	xxoləri	aureate	G Diablo	tensIq Tə	WS Sassy	Jangi2 Y	iviner	Y Tennyson	Λjuno	tidms SOI	elter	OS Munro	Sunsins 5	uəsı	lurler	gninis	B Score	verage LSD (
End-use group	S	4	Appr	oved	4	н	17	Provisional	S	9	1	nder test f	or malting	1		Food	Des	Described	
Scope of recommendation	š	X	ž	ž	ž	ž	š	ž	ž	ž		ž	ž	ž	Š	ž	UK Gr.Dis	UK Gr.Dis UK Null-Lox	XO
Variety status	o	v	v	υ	υ					NEW	NEW	NEW	NEW	NEW	NEW				
Fungicide-treated grain yield (% treated control)																			
United Kingdom (7.8 t/ha)	102	101	101	66	76	95	102	102	102	105	103	103	103	103	102	104	91	86	12
East region (7.9 t/ha)	103	101	101	66	26	93	103	101	102	107	104	104	102	105	103	104	06	86	3.1
West region (7.4 t/ha)	103	102	102	86	96	96	100	101	101	[105]	[105]	[103]	[103]	[102]	[101]	104	93	86	eri
North region (8.2 t/ha)	101	102	100	100	26	96	103	103	102	105	101	103	103	101	102	104	06	66	2
Untreated grain yield (% treated control)																			
United Kingdom (7.8 t/ha)	91	06	85	88	87	98	16	06	88	91	94	98	92	16	92	16	82	06	3.0
Disease resistance																			
Mildew (1-9)	80	8	6	00	80	8	[8]	[6]	[8]	80	8	8	80	8	80	[8]	7	6	0.8
Brown rust (1-9)	4	4	10	50.	4	2	3	2	4	4	10	2	2	4	4	9	2	2	+
Rhynchosporium (1-9)	7	9	1	9	9	9	ın	4	S	E	[6]	[9]	[2]	[5]	[9]	9	6	7	1.5
Agronomic features																			
Resistance to lodging without PGR (1-9)	7	7	9	7.	7	9	[7]	M	[7]	[8]	[8]		[2]	[8]	[8]	[6]	89	7	+
Straw length without PGR (cm)	11	72	72	73	75	80	73	89	72	77	20	20	73	72	72	89	72	72	1.8
Ripening (days +/- RGT Planet)	0	0	Ŧ	£	0	Ŧ	7	+	+5	7	+	+5	7	Ŧ	45	Ŧ	-2	¥	0
Resistance to brackling (1-9)	00	80	60	co	60	9	00	80	7	00	6	o	80	60	00	6	60	60	0
Main market options																			
MBC malting approval for brewing use	ш	4	ш	ш	ш	ž	۵.	ž	۵	÷	E	+	*	e	1	,		2	
MBC malting approval for malt distilling use	· ·	ıL	ı	ш	ž	u.	*	۵	۵.			H	+		-		Oğ.		4
Grain quality																			
Specific weight (kg/hl)	69.3	67.0	67.2	2.79	68.7	68.9	67.2	67.5	66.5	65.7	67.5	67.7	65.7	68.4	8.99	66.2	68.8	9.79	0
Screenings (% through 2.25 mm)	6.0	1.4	1.3	1,4	1.2	1.0	1,5	1.7	1.4	1.4	6.0	1.0	2.1	1.2	1.6	1.5	1.0	1,4	
Screenings (% through 2.5 mm)	2.3	3.6	3.2	3.5	3.3	2.4	3.5	4.5	3.2	4.3	2.0	2.5	6.5	3.6	4.2	4.3	2.7	3.6	1.0
Nitrogen content (%)	1.52	1.49	1.49	1.50	1.52		1.46	1.48	1.44	1.48	1.50	1.53	1.46	1.47	1.47	[1.48]		[1.52]	
Malting quality																			
Hot water extract (I deg/kg)	313.3	313.3	313.4	313.4	312.7		314.2	314.1	315.5	313.8	313.7	313.5	312.7	313.9	315.2	311.6		311.2	2.1
Predicted spirit yield (laa/t)	,	433.4	433.5	435.0	[434.0]		[431.5]	435.8	436.8	434.9		436.0	435.6	436.7	4353	1431 51			u

Varieties no longer listed: Cadiz, Florence, KWS Curtis, Malvern, Prospect and Sun King.
Null-Lox and grain-distilling (Gr.Dis) spring barley varieties are described. Data is provided for information only and does not constitute a recommendation.

Mult. or varieties lack a gene for poperate production. Coverse are strongly advised to never with their busy control committing to a mailing variety without full MBC approval. Seed supplied for R. It also for 7 Temproun in 2023 was heavy infected with net block. This may have negatively impacted yields.

Comparisons of variety performance across regions are not valid.

On the 1–9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance).

F = Full MBC approval in this segment

P = Provisional MBC approval in this segment

T = Under test for MBC approval in this segment

N = Not approved by MBC in this segment

P1 = First year of listing

P2 = Second year of listing UK = Recommended for the UK C = Yield control MBC = Malting Barley Committee

[] = Limited data PGR = Plant growth regulator

LSD = Least significant difference Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence level

14

25.6

605

104

LCK

Tundra

Winter Beans PGR0 Descriptive List 2024

The control for yield is the mean of 4 & 5 year varieties (4.40t/ha). Yield differences of less than 10.0% are not statistically different.

SOUTH THE STATE OF			Agi	Agronomic characters	characte	ers	Resistance to	ice to		Seed characters	racters		
- PG RO -	UK Agent see appendix	Yield as % of control	Flower	Earliness of maturity (1-9)	Straw length (cm)	Standing ability at harvest (1-9)	Downy mildew (1-9)	Rust* (1-9)	Chocolate spot (1-9)	Thousand seed weight (g) (@15%mc)	Protein content (% dry)	No. Years in matrix	Year first listed
Pale Hilum													
Vespa	Sen	109	U	2	113	80	2	2	7	675	25.4	2	18
Vincent	Sen	107	υ	2	114	80	9	4	9	779	26.8	2	21
Bumble	Sen	105	U	2	118	œ	2	2	2	671	25.0	2	16
LG Arctic	LUK	104	U	2	113	80	9	4	2	652	26.0	м	24
Norton	Sen	101	v	9	109	8	9	2	2	999	25.6	Ŋ	21
Bonneville	Sen	100	U	9	113	80	2	4	2	703	25.8	4	23
Ninja	Sen	86	U	œ	105	œ	4	2	2	623	27.3	м	24
Honey	Sen	94	U	7	104	8	2	4	2	674	25.8	2	12

(1-9) A high rating indicates that the variety shows the character to a high degree. The scales of characters of winter beans do not necessarily correspond with those for spring beans. © PGRO 2023 27.11.2023

Combining Peas PGRO Descriptive List 2024

The control for yield is the mean of 4 and 5 year varieties (3.81 t/ha). Yield differences of less than 11.4% are not statistically different.

		Agronon	ic char	acters	~	esistance	e to	Seed cha	racters		
UK Yagent as see co	UK Yield E Agent as % of see control m	Yield Earliness Straw Standing Pea I as % of of length ability at wilt r control maturity (cm) harvest (Race1) (1-9)	Straw length (cm)	Standing ability at harvest (1-9)	Pea wilt (Race1)	Downy nildew (1-9)	Powdery mildew*	Thousand seed weight (g) (@15%mc)	Protein content (% dry)	No. Years in matrix	Year first listed

Yellow												Ī
Concerto	LSPB	115	9	11	1	æ	7	[S]	351	21.4	3	24
Batist	Sen	113	9	85	1	œ	9	[2]	304	216	3	24
Kameleon	Sen	112	9	74	1	ď	2	[2]	304	21.8	2	20
Orchestra	LSPB	110	9	11	1	~	4	[S]	316	222	2	20
KWS Flam	KWS	110	9	87	7	æ	2	[2]	254	21.5	2	24
Manager	KWS	107	9	81	7	ď	9	[MR]	283	22.4	2	18
Glam	Sen	105	2	84	1	æ	2	[S]	526	22.4	4	23
Rivoli	Sen	100	2	78	1	[S]	8	[S]	283	22.1	2	22
LG Ajax	LUK	100	9	73	1	æ	7	[HR]	592	22.5	4	23
Pick												
Flamingo	CSG	78	4	84	9	æ	1		261	23.4	m	24
Green												
Carrington	LSPB	111	2	84	1	œ	8	[S]	253	21.4	'n	22
KWS Gotham	KWS	107	3	84	9	4	2	[2]	292	22.5	4	23
Mikka	IARA	106	2	98	7	~	7	[S]	300	22.5	2	21
Greenway	IARA	106	2	85	1	œ	7	[S]	303	22.1	20	21

IARA Agrii

Reacher Daytona Mankato

Prophet

LG Aviator

Shazam

Kactus

Kiravi

LSPB LSPB

Stroma

Bluetime

Sen Sen Sen Sen

Karioka

(1-9) A high rating indicates that the variety shows the character to a high degree.
All varieties are semi-leafless. Downy mildew: Varietal resistance may vary in different
regions as race structure of the disease changes. Pea wilt (Fusarium oxysporum f. sp. pisi) (race 1) Date
R = Resistant; S = Susceptible. "Powdery mildew Trials & Breeders information -
HR = High resitsance, MR = Moderate resistance. S = Susceptible. © PGRO 2023 27.11.2023

LSPB

Akooma

IARA

Octavia

Dalt

Sakura

LSPB

Takayama

Vision

Dalt

Rose

LUK K

Mantara

Spring Beans PGR0 Descriptive List 2024

The control for yield is the mean of 4 and 5 year varieties (4.27 t/ha). Yield differences of less than 7.5% are not significantly different.

Tomano,		ī	Agi	Agronomic characters	charact	ers	Resista	Resistance to	Seed characters	racters		1
PG RO	UK Agent see appendix	Yield as % of control	Flower	Earliness of maturity (1-9)	Straw length (cm)	Standing ability at harvest (1-9)	Downy mildew (1-9)	Rust* (1-9)	Thousand seed weight (g) (@15%mc)	Protein content (% dry)	No. Years in matrix	Year first listed
Pale Hilum												
Genius	LSPB	108	U	9	105	00	2	4	529	26.8	4	23
Lynx	LSPB	107	U	ø	104	00	9	4	521	27.6	2	16
Synergy ^{LVC}	SU	107	v	7	107	00	м	[2]	255	28.2	м	24
Navara	Sen	106	U	S	109	00	2	[9]	552	26.2	м	54
LG Stego	TUK	105	v	ø	106	00	4	9	222	28.3	4	23
Futurative	LSPB	104	U	7	106	80	4	4	549	27.1	4	23
Victus	LSPB	102	v	7	100	7	2	4	551	27.8	5	19
LG Hawk	TUK	101	U	7	105	80	м	[2]	575	26.8	м	24
LG Raptor	TUK	66	U	7	105	00	4	50	539	27.5	S	20
Vertigo	LSPB	66	U	7	105	7	4	4	581	27.6	4	13
LG Viper	LUK	96	U	10	94	6	7	1	585	28.6	2	21
Fuego	LUK	93	U	1	101	00	2	4	573	28.0	m	90
Yukon	LSPB	88	v	00	86	00	00	S	622	27.0	2	20
Black Hillam, Tic	ж.											
Maris Bead	WAC	85	U	LC.	111	7	7	15	409	29.6	M	64

correspond with those for winter beans. The export market usually requires pale hilum types. LVC = Low Vicine 8 Low Convicine (<0.15%DM). (1-9) A high rating indicates that the variety shows the character to a high degree. The scales of characters of spring beans do not necessarily *Rust data influenced mostly by 4 trials in 2020. The !sd is approx 1 rating point. [] = Limited Data. @ PGRO 2023 27.11.2023

Crop Production Specialists

Advanced agronomy

Environmental Services

Farm Business Consultancy

You have a question, we have the answer

Digital

Tools in Omnia to ease every decision

TerraMa

The most accurate soil mapping system

Healthy Soils

· Soil improvement strategies

Environmental Services

· Benefit from schemes and advice

Farm Business Consultancy

· Maximise business performance

Agroecology Services

Practical, sustainable farming techniques

Carbon Services

· Understand and manage your farm's Carbon

Seed

· Varieties for your situation

Nutrition

· Optimise for yield and performance

NATIONAL SALES ENQUIRIES:

David Bouch
SEED MANAGER - NATIONAL

Office: 01526 831306 Mobile: 07802 630107

Peter Brundle SEED MANAGER – SOUTH Mobile: 07774 707494

Harry Atkinson COMMERCIAL SEED & CROP NUTRITION SUPPORT — CENTRAL

Mobile: 07747 455932

David Neale CENTRAL

Mobile: 07799 695549 Tel: 01451 844264 Stewart MacIntyre
SEED MANAGER - NORTH

Mobile: 07834 933890

Jack Richards LOGISTICS AND SEED CO-ORDINATOR SOUTH WEST

Office: 01872 227944

Lucy Thomas SEED ADMIN - TRURO 01872 227941

Central Seed Office Tel: 01945 586462

H L Hutchinson Limited

Weasenham Lane • Wisbech Cambridgeshire • PE13 2RN

Tel: 01945 461177 Email: seedorders@hlhltd.co.uk

www.hutchinsons.co.uk

Mean and the mean and the

f HLHutchinsons