HUTCHINSONS Crop Production Specialists

LE MARKEN BALLING

Seed & Varieties INFORMATION BOOK 2021

	Oilseed Rape Variety Notes 2021	04 - 1	10
	Wheat Variety Notes 2021	11-2	20
	Winter Barley Variety Notes 2021	21-2	27
Ó	Winter Oat Variety Notes 2021	28-2	29
	Winter Bean		30
	Variety Notes 2021 Seed Rate Charts 2021		31
	Helix and Hutchinsons Regional Trial Centres	32-3	34
	Catch & Cover Crop Mixes	35 - 3	37
	Spring Cropping Overview	38-4	41
Ó	Maize Variety Options Best selling 2021 Varieties	4	42
	TerraMap High Definition Soil Mapping	4	43
	Environmental Services	44 - 4	45
	Recommended List Charts	46 - 5	58

MESSAGE FROM THE SEED TEAM

Message from the Seed Team

Thinking back to extreme weather events, we have thankfully faced a more "normal" autumn and given that the autumn of 2019 was one not experienced in quite literally generations, then normal this season is acceptable on every leve!!

Hybrid wheat is still on the horizon but, in reality, no closer than at this time last year (hopefully this will change by next year). Hybrid barley will continue to be the focus for this sector at present, with more varieties entering the fold to offer advancement in agronomics.

With last year's introduction of a BYDV resistant trait in a wheat variety from RAGT, we await to see if Wolverine is going to be a game changer, as more commercial seed enters the market place.

The oilseed rape market dipped to circa 310,000 hectares last autumn (790,000 ha at the beginning of the last decade), but there is a very real chance that we will see a bounce back in autumn 2021 given the success of the 2020 crop established - people will have seen neighbouring growers successfully establish a vigorous and strong crop, with the prospect of high oilseed prices at the farm gate.

This in turn, with another year's break for those who did not plant last autumn, lends itself to growing the crop again this autumn. There are many variety options to consider, but we will look to offer advice and polarise these options. The key features will be Hybrid, TuYV resistance, Pod Shatter resistance, robust disease scores and vigour, which will remain essential.

This year, we are also pleased to extend the bespoke Hutchinsons cover crop range, specifically designed to maximise the many known benefits associated with their use. These bespoke mixes proved hugely successful and were in great demand last year. Details can be found on pages 35 - 37.

We will again look to advise, support, deliver and assist in all the challenging decisions that present themselves without fail every season, for autumn 2021 and beyond.

t: 01526 832771 e: seedorders@hlhltd.co.uk www.hlhltd.co.uk

LG Aviron

With OSR likely to increase in area planted for 2021,

finding the ideal variety that suits the region and soil types is key. With this in mind, we would like to draw your attention to **LG Aviron** - newly recommended for this autumn. On the AHDB Recommended List, it is equal top for gross output in the UK, second in the East/West and second in the North.

With this universal ability to perform across the regions, coupled with RLM 7+ Phoma resistance (7), good light leaf spot (7), TuYV which is now a key consideration and the addition of Pod Shatter resistance, plus the N Flex characteristic to aid development, this variety has all the attributes that you need to consider.

Although the ideal drilling position would be 15th August to 10th September, it can be drilled earlier (but with attention paid to a robust PGR programme due to the excellent autumn vigour, second to none), or indeed later if the soils remain warm and there is moisture to utilise. Aviron has what appears to be the most robust and enabling vigour in the autumn, coupled with an excellent spring vigour trait, that really can inspire some confidence in its establishment once drilled.

Variety type

LG Aviron

Hvbrid

If OSR is a key part of your rotation, then Aviron should in turn be a key part of that crop portfolio.

	Scope of recommendation	UK				
AHDB		NEW				
RECOMMENDED	United Kingdom (5.3 t/ha)	108				
	East/West region (5.2 t/ha)	109				
	North region (5.9 t/ha)	105				
	Seed yield (% treated contro	l)				
	United Kingdom (4.9 t/ha)	110				
	East/West region (4.8 t/ha)	110				
t: 01526 832771	North region (5.4 t/ha)	107				
0	United Kingdom (5.4 t/ha)	-				
e: seedorders@hlhltd.co.uk	United Kingdom (5.0 t/ha)	-				
	Agronomic features					
www.hlhltd.co.uk	Resistance to lodging (1–9)	[7]				
	Stem stiffness (1–9)	6				
A CARRY AND	Shortness of stem (1–9)	6				
	Plant height (cm)	161				
A State State State	Earliness of flowering (1–9)	8				
X The water and the second	Earliness of maturity (1–9)	6				
A STATE AND A STATE OF	Pod shatter	R				
The second a second pro-	Disease resistance					
	Light leaf spot (1–9)	7				
	Stem canker (1–9)	7				
04	TuYV	R				

Oilseed Rape Variety Notes 2021

RECOMMENDED LIST CHART PAGES 48 - 49

AMBASSADOR

LIMAGRAIN

RESTORED HYBRID

Gross Output: 108 • Oil content: 45.2 TuYV resistant • Recommended for UK

- A restored hybrid variety, recommended for the UK
- Pod Shatter resistance.

LLS 7

LODGING 8

STEM STIFFNESS 8 SHORTNESS 6

EARLY FLOWER 7

EARLY MATURITY 6

STEM CANKER 7

LG AVIRON WINTER OILSEED RAPE

LIMAGRAIN

RESTORED HYBRID

Gross Output: 108 • Oil content: 44.5 TuYV resistant • Recommended for UK

- NEW restored hybrid
- Joint highest yielding variety on AHDB RL
- Exceptional autumn and spring vigour
- Suited for a main to late drilling window

- LODGING 7
- STEM STIFFNESS
 6

 SHORTNESS
 6

 EARLY FLOWER
 8

 EARLY MATURITY
 6

 LLS
 7

 STEM CANKER
 7
 - Fully loaded hybrid N-Flex, RLM7+, POSH, TuYV
 - Consistent high yield across all regions (2nd East/West and 2nd in the North)
 - Hutchinsons' semi exclusive.

LODGING 8 STEM STIFFNESS 8 SHORTNESS 6

LLS 7

EARLY FLOWER 7 EARLY MATURITY 5

STEM CANKER 7

AURELIA WINTER OILSEED RAPE

LIMAGRAIN

RESTORED HYBRID

Gross Output: 107 (UK) • Oil content: 45.3 • TuYV resistant • Recommended for UK

- Restored hybrid added to the RL in 2020 and the highest yielding of any variety in the North
- Excellent disease resistance, so in essence a good all-round variety with excellent vigour
- TuYV resistance coupled with Pod shatter
- Most widely drilled variety in autumn 2020.

NOTES: if growing OSR in autumn 2021 this should be a given, as a variety of choice.

DK Expedient

DEKALB

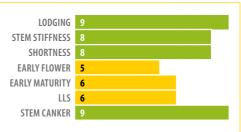
RESTORED HYBRID

Gross Output: 103 • Oil content: 45.3 Recommended for East/West

- Variety for East/West regions
- RLM7 Phoma resistance giving strong resistance to Stem Canker
- Average resistance to Light Leaf Spot

LODGING8STEM STIFFNESS8SHORTNESS6EARLY FLOWER8EARLY MATURITY6LLS5STEM CANKER8

- Very early spring regrowth with mid/late flowering
- Good yield potential and oil content
- Pod Shatter resistance.


TENNYSON

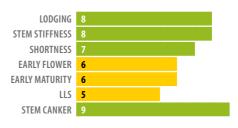
ELSOMS

RESTORED HYBRID

Gross Output: 106 • Oil content: 44.2 Candidate for East/West

- NEW for 2021
- TuYV resistant

- Excellent stem canker
- Performs very well in the East/West to date.


PICASSO

LSPB

RESTORED HYBRID

Gross Output: 104 • Oil content: 44 Common catalogue

- NEW common catalogue variety with excellent Phoma resistance
- Good autumn vigour

- Good standing ability
- Good resistance to lodging with medium maturity.

AC.	ACIA
and the second	ILSEED RAPE

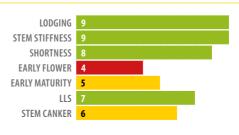
LIMAGRAIN

CONVENTIONAL

Gross Output: 107 • Oil content: 45.7 • Recommended for UK

- Added to the RL in 2020 a later maturing variety, with the highest treated gross output recommended of any conventional variety currently available
- Recommended for all regions

- Very stiff stemmed, with a high resistance to lodging and excellent agronomics
- Excellent autumn and spring vigour for a conventional type.


ANNIKA

LIMAGRAIN

CONVENTIONAL

Gross Output: 106 • Oil content: 45 Candidate for 2021

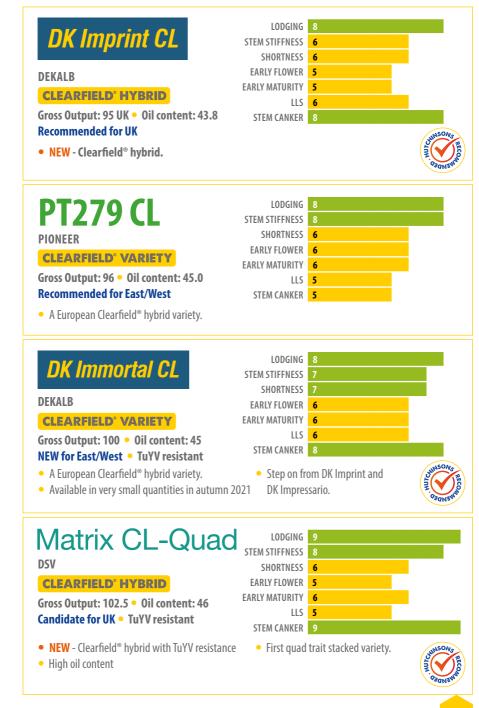
- Candidate for the Recommended List in 2021
- Performs well in all regions

- Good autumn vigour and better than some of its contemporaries
- TuYV trait in a conventional variety.

KWS BLAZEN

KWS

CONVENTIONAL


Gross Output: 102 (NORTH) • Oil content: 44.7 Recommended for North Region

 Added to the RL in 2020 - a later maturing variety, with high treated gross output recommended for the North region

LODGING	8		
STEM STIFFNESS	9		
SHORTNESS	6		
EARLY FLOWER	6		
EARLY MATURITY	5		
. 7 LLS	6		
STEM CANKER	6		

- Very stiff stemmed, with a high resistance to lodging and excellent agronomics
- Available with establishment protection scheme.

09

CROME LSPB RESTORED HYBRID CLUBROOT RESISTANT Gross Output: 101 • Oil content: 43.6 • Club Recommended for Clubroot infected land or • Clubroot resistance	
Crocodile DSV RESTORED HYBRID CLUBROOT RESISTANT Gross Output: 103 • Oil content: 45 Recommended for Clubroot infected land or • Added to the RL in 2020 - Recommended for clubroot situations in East/West regions • Good yields in East/West	LODGING 8 STEM STIFFNESS 8 SHORTNESS 6 EARLY FLOWER 6 EARLY MATURITY 5 LLS 6 STEM CANKER 4 NIY EAST/West Should only be grown in areas where Clubroot is a threat! Good light leaf spot scores, but weaker on Phoma and has good standing power.
CROOZER LSPB RESTORED HYBRID CLUBROOT RESISTANT Gross Output: 101 • Oil content: 44.8 Clubroot Resistance Recommended for Clubroot infected land or • Recommended for Clubroot situations in East/West regions • Suitable for sites where the Clubroot pathogen a limitation to varieties without resistance	Very good Phoma resistance for the clubroot sector.

Wheat Variety Notes 2021

KWS ZYATT

KWS

GROUP 1 HARD

UK 98 • FAST 98 • WEST 99 • NORTH 97

- Group 1 variety with high yields, milling guality characteristics and an excellent agronomic package
- High untreated yield, limited data suggests a sprouting rating 5, something to watch
- Now well-liked by multiple end users, careful N management required to ensure full protein specification

UK 97 • EAST 97 • WEST 97 • NORTH 96 High yielding, awned Group 1 variety

Relativity short and a good stander, better

rapid speed of development in the spring

It is an early maturing variety

to be grown after maize

over its counterparts

protein specification

drilled towards the end September due to its

High Fusarium rating makes it especially suited

Has Pch1 eyespot resistant gene, good 2nd

The only guality wheat to have OWBM

resistance, giving it a definite advantage

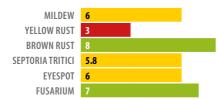
• Higher N applications needed to achieve full

wheat, performs well on light soils

RAGT Grow to expect the l

GROUP 1 HARD

R(¬I


RAGT

RECOMMENDED LIST CHART PAGES 50 - 51

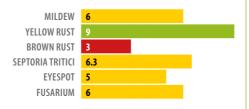
- Very good eyespot as well as acceptable resistance to Septoria
- ukp bread export potential.

NOTES: performs very well as a 2nd wheat.

Good Hagbergs (although has a tendency to sprout, so priority must be given to it at harvest), it also has a good specific weight

 Most flexible drilling dates currently available.

NOTES: Grown specifically for its agronomics, over and above its milling quality in certain instances, re-enforcing its capabilities in Starting to be more susceptible to Yellow Rust.



LIMAGRAIN

GROUP 1 HARD

UK 96 • EAST 96 • WEST 97 • NORTH 93

- Good agronomics apart from a growing susceptibility to brown rust and eyespot, although very useful Septoria score
- An established, consistent milling variety becoming very popular with end users for its specific quality attributes

- Meets the specifications for ukp bread wheat for export, good specific weight and Hagbergs
- Still a very well-respected variety by the millers and maintains a niche market share.

KWS EXTASE

KWS

GROUP 2 HARD

UK 100 • EAST 100 • WEST 101 • NORTH 98

- Group 2 added to the recommended list in 2019
- Highest untreated yield on the RL and high treated yields in the West
- Second highest Septoria Tritici resistance rating on the 2021/22 recommended list
- Very good yellow rust rating
- Has done particularly well relative to others on the light soils

- Better suited to mid drilling slot (relatively tall but good stander)
- Limited data would suggest it has ukp export potential.

NOTES: Second highest Septoria Tritici resistance rating on the recommended list at 8.0.

KWS SISKIN

KWS

GROUP 2 HARD

UK 100 • EAST 99 • WEST 100 • NORTH 98

- Short strawed variety with reasonable standing ability
- One of the highest untreated UK yields on the RL
- Good overall disease package. Has done well as a first or second wheat
- Has done well in an early/mid drilling slot but needs a good PGR policy to realise its potential

- Meets the specifications for ukp bread wheat for export, although some variability in the baking process may mean it is more suitable for blending
- Limited data suggests it might have a tendency to sprout and may warrant giving it priority at harvest.



LIMAGRAIN

GROUP 2 HARD

UK 99 • EAST 99 • WEST 99 • NORTH 93

- Group 2 variety added to the recommended list in 2019
- Only Group 2 variety to have OWBM resistance
- Stiff strawed with high resistance to yellow rust
- Possibly better suited to an earlier drilling slot

- Excellent fusarium resistance so a variety that will perhaps fit in a maize rotation
- Limited data would suggest it has uks export potential.

MILDEW

YFI I OW RUST

BROWN RUST

SEPTORIA TRITICI 7.1

EYESPOT 5

FUSARIUM 6

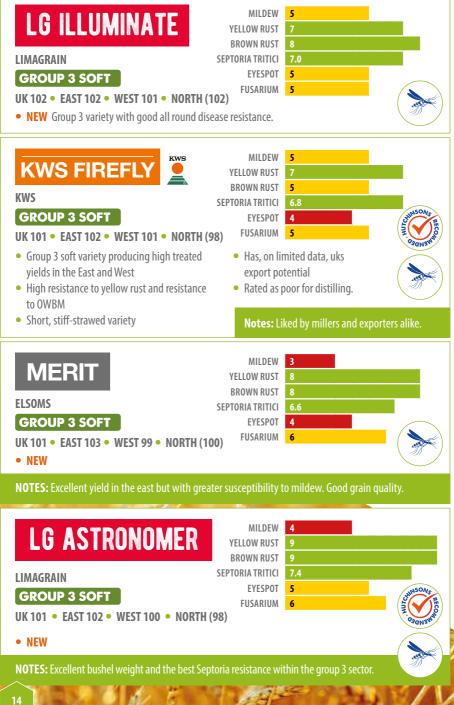
4

8

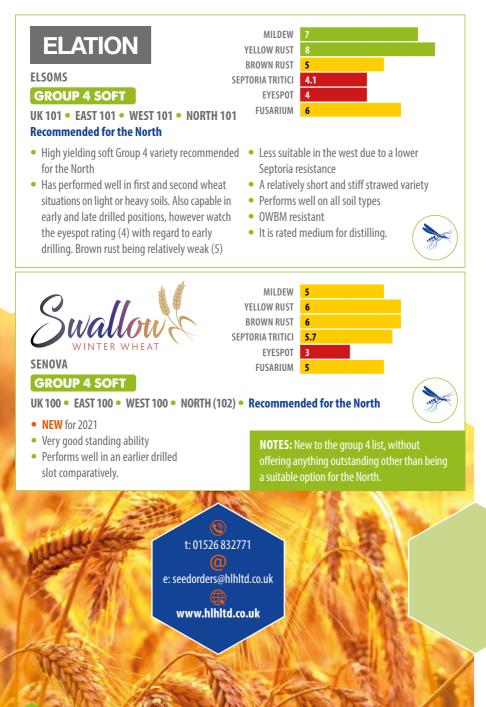
8

NOTES: Only Group 2 variety to have orange blossom midge resistance.

LG PRINCE

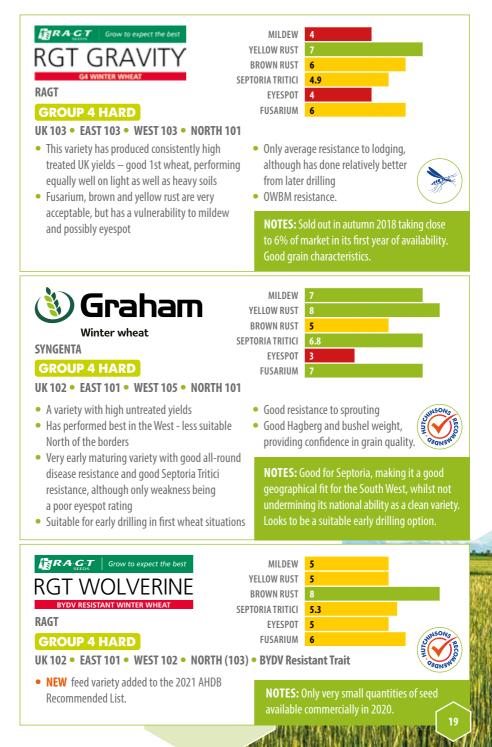

LIMAGRAIN

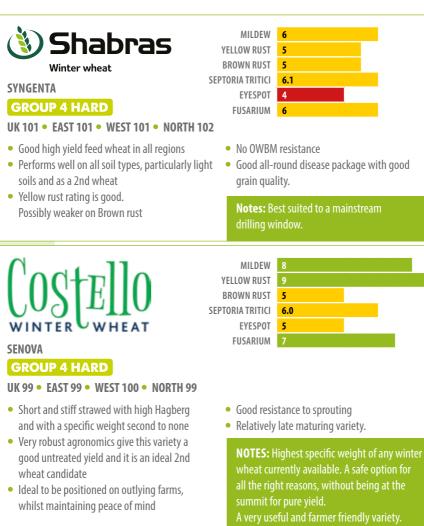
GROUP 3 SOFT


UK 103 • EAST 104 • WEST 102 • NORTH (100)

• NEW

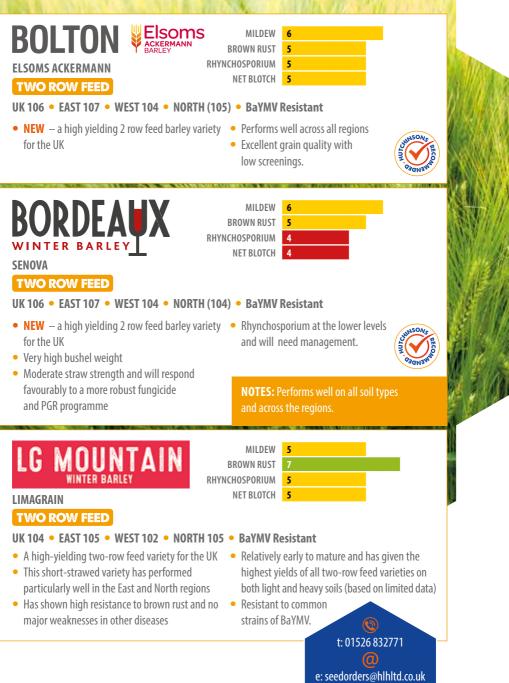
NOTES: Good quality group 3 with good all round disease resistance. Bushel weight toward the lower end of the ideal.





t: 01526 832771

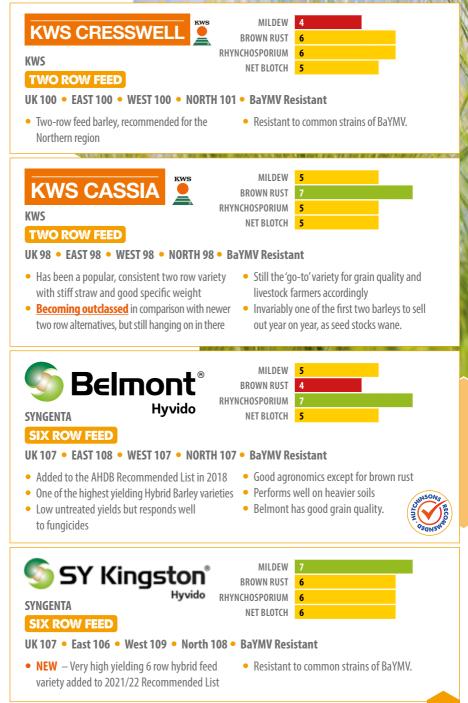
e: seedorders@hlhltd.co.uk

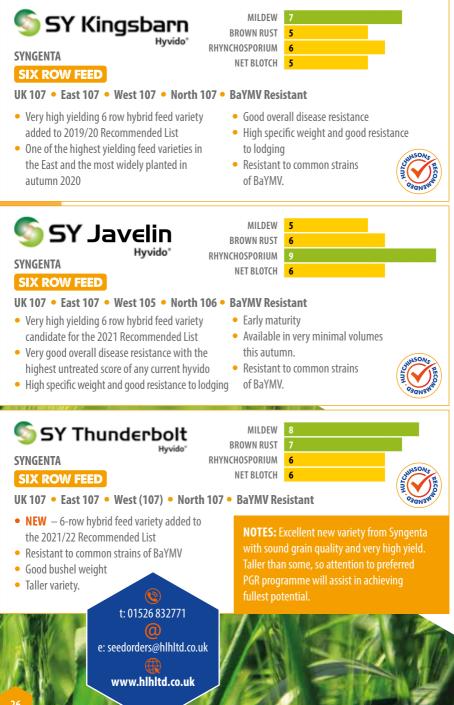

www.hlhltd.co.uk

WINTER BARLEY VARIETY NOTES 2021

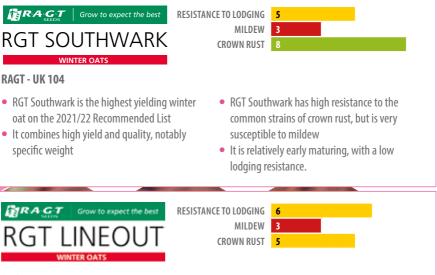
Winter Barley Variety Notes 2021

RECOMMENDED LIST CHART PAGES 52 - 53


Civitation Constraints and West States and States States States and States States States and States Stat	MILDEW 6 BROWN RUST 7 RHYNCHOSPORIUM 6 NET BLOTCH 6 BAYMV Resistant • Has been seen to be relatively early maturing • Resistant to BaYMV strains. • Now with full approval from MBC. NOTES: Introduced in 2018 - malting variety suited to the East and West regions with full MBC approval.
Winter barley SYNGENTA TWO ROW MALTING UK 96 • EAST 96 • WEST 95 • NORTH 96	MILDEW 6 BROWN RUST 6 RHYNCHOSPORIUM 6 NET BLOTCH 6
 Malting variety for brewing with good agronomic characteristics Has full approval from the MBC 	 Stiff-strawed and has performed better on light soils Resistant to common strains of BaYMV.
KWS TARDIS KWS TWO ROW FEED UK 106 • EAST 107 • WEST 105 • NORTH	MILDEW 5 BROWN RUST 6 RHYNCHOSPORIUM 7 NET BLOTCH 5 (105) • BaYMV Resistant
 NEW — a high yielding 2 row feed barley variety for the UK Stiff strawed 	 Highest yielding 2 row barley currently available in the market place Very good resistance to Rhynchosporium.



www.hlhltd.co.uk



Winter Oat Variety Notes 2021

RAGT - UK 100

- An early ripening husked variety from RAGT, with a higher yield than some established varieties and a reasonable grain quality
- It is susceptible to mildew
- It has moderate straw strength and is the earliest maturing variety on the recommended list.

RESISTANCE TO LODGING MILDEW **CROWN RUST**

i	4	
I	4	
Γ	4	

SENOVA - UK 99

- Dalguise is a very consistent variety with relatively
 Needs robust management due to poor low screenings and a high specific weight
- It has relatively long straw with low lodging resistance
- agronomic characteristics

RESISTANCE TO LODGING

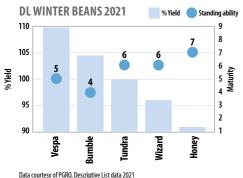
MILDEW 6 CROWN RUST 5

6

SENOVA - UK 97

- Mascani remains by far the most popular variety with oat millers and growers
- It is less susceptible to mildew than most recommended varieties and has moderate resistance to crown rust, although a race exists to which it could be susceptible
- Mascani delivers moderate yields, but this is compensated by its combination of high kernel content and specific weight.

RESISTANCE TO LODGING 6



SENOVA - UK 96

- Gerald's consistent yields and good field characteristics ensure it remains a popular variety choice for growers, although it is now being superseded
- Top quality milling variety limited data suggests it is susceptible to mildew
- A late maturing variety, with a low kernel content and moderate straw strength.

Winter Bean Variety Notes 2021

The control yield from year 4.8.5 varieties (4.45t/ha), yield differences of less than 9.9% are not statistically significan

Introduction

Beans will continue to remain key within the rotation for many growers in providing a useful break crop to cereals. They also offer additional flexibility in an autumn sowing window, beyond the peak work requirements of oilseed rape and cereals. Beans are also taking acreage from oilseed rape because of issues attributed to cabbage stem flea beetle.

The later sowing affords a greater opportunity to maximize the effects from the use of non-selective herbicides prior to drilling and better residual activity of pre-emergence herbicides applied to moist soils, thereby improving the efficacy of grass weed control within the rotation.

Varieties General

Winter Bean choice has remained relatively unchanged from last year, the only exceptions being the introduction of two new high yielding variety from Senova, **Vincent** and **Norton**.

Variety listings in order of yield as they appear on the Descriptive List.

Vespa (Senova) Yld: **109** First listed 2018, gained full recommendation in 2020, whilst also moving to the top of the yield rankings. It produces high yields with excellent standing ability, albeit slightly inferior to

Tundra in shortness of straw and ripening.

DESCRIPTIVE LIST CHART PAGE 55

Bumble (Senova) Yld: 104 First listed in 2016, an other high yielder, slightly behind Tundra in agronomic characteristics in shortness of straw, standing ability and slightly later in maturity. It has slightly larger seed, although lower grain protein. Tundra (Limagrain) Yld: 99 First listed in 2014, although still a popular variety. It is a moderately short straw variety, with good standing ability and an earlier maturity. In many ways similar in agronomic characterises to Wizard, with a slightly higher yield. Wizard (Senova) Yld: 96 First appearing on the recommended list in 2003, proves its consistency as a variety. It is now starting to lose ground in terms of yield to the newcomers. Agronomically a sound performer with additional resistance to leaf and pod spot (Ascochyta fabae). A large-seeded variety with good protein levels, suited for use in the animal feed market and has excellent premium export potential. Honey (Senova) Yld: 92 First listed in 2012, it has good agronomic characteristics, the earliest maturing variety with the shortest straw and standing ability on a par with Vespa, bold seed and good protein content. It is well suited to fertile sites and the North, due to its early maturity. The only downside, its yield is dropping away from the other contenders.

New Varieties

Vincent (Senova) Yld: 110 New to the 2021 descriptive list. Presently the highest yielding variety. Similar to Vespa in height (medium) and good standing ability, although slightly later to maturity. Exceptionally large seed with good protein content, could be popular with the export and feed market. Norton (Senova) Yld: 107 New to the 2021 descriptive list, has many good agronomic aspects and is one of the earliest maturing varieties, on a par with Honey. It has exceptionally large seed, with potential for feed or export.

Seed Rate Charts

IGW IGW IGW IGW IGGU IGG	and the	Oil Seed Rape	seeds/m ²	30	40	50	60	70	80	90	100	
4.5 1.35 1.8 2.25 2.7 3.15 3.6 4.05 4.5 5 1.5 2 2.5 3 3.55 4.4 4.5 5 5.5 1.65 2.2 2.75 3.3 3.85 4.4 4.8 5.4 6 1.85 2.2 2.75 3.0 3.5 4.4 4.5 5.5 6 1.85 2.2 2.75 3.0 3.5 4.4 4.5 5.5 6 1.85 2.6 3.25 3.9 4.55 5.2 5.85 6.5 Cereals seeds/ml 1.50 1.77 1.88 1.00 1.22 1.44 1.56 1.68 1.80 1.92 2.04 4.7 1.18 1.30 1.41 1.53 1.66 1.79 1.82 2.00 1.35 1.47 1.88 2.00 1.35 1.47 1.88 2.00 1.35 1.47 1.88 2.00 1.35 1.47 1.88 2.00 1.35 1.41 1.53 1.66	AN A	TGW										
5 1,5 2 2,5 3 3,5 4 4,5 5 6,6 1,8 2,4 3 3,6 4,2 4,8 5,5 6,5 1,95 2,6 3,2 3,3 3,6 4,4 4,95 5,5 6,5 1,95 2,6 3,2 3,9 4,5 2,5 5,8 6,5 100 2,6 3,2 3,9 4,5 2,5 5,8 6,5 113 124 135 147 158 169 180 192 46 113 124 135 161 173 184 196 47 118 120 131 151 161 173 184 196 46 120 122 134 155 168 180 192 204 217 50 125 130 141 153 166 179 192 204 217 51 128 190 100 110 120 132 144 155	10 A 10 A	4		1.2	1.6	2	2.4	2.8	3.2	3.6	4	
5.5 1.65 2.2 2.75 3.3 3.85 4.4 4.95 5.5 6 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.5 1.95 2.6 3.25 3.9 4.55 5.2 5.85 6.5 Cereals seeds/m 20 275 3.0 325 3.9 4.35 1.47 1.68 1.97 1.88 2.00 1.84 1.92 1.44 1.55 1.65 1.77 1.88 2.00 1.84 1.92 1.92 1.44 1.95 1.66 1.77 1.88 2.00 1.84 1.92 1.92 1.44 1.95 1.66 1.79 1.92 2.04 2.17 1.35 1.47 1.60 1.72 1.84 1.96 2.09 2.14 2.17 1.35 1.47 1.68 1.90 1.92 2.04 2.17 1.35 1.47 1.68 1.90 1.92 1.44 1.55 1.66 1.79 1.92 2.04 2.17 1.55 1.65 1.66 1.79	ELASKI	4.5		1.35	1.8	2.25	2.7	3.15	3.6	4.05	4.5	
6 1.8 2.4 3 3.6 4.2 4.8 5.4 6 6.5 1.95 2.6 3.25 3.9 4.55 5.2 5.85 6.5 Creals veeds/m² 200 275 300 25 350 375 400 425 TGW 113 124 135 147 158 169 180 192 46 115 127 138 150 161 173 184 196 47 118 130 141 153 166 177 188 200 213 48 120 125 138 150 163 175 188 200 213 50 125 138 150 163 175 188 200 213 51 128 141 153 166 179 192 244 171 55 52 59 105 114 <td>A Contractor</td> <td>5</td> <td></td> <td>1.5</td> <td>2</td> <td>2.5</td> <td>3</td> <td>3.5</td> <td>4</td> <td>4.5</td> <td>5</td> <td></td>	A Contractor	5		1.5	2	2.5	3	3.5	4	4.5	5	
6.5 1.95 2.6 3.25 3.9 4.55 5.2 5.85 6.5 Image: Constraint of the section of the sectin of the section of the section of the section of the sectin of th	State of the second state	5.5		1.65	2.2	2.75	3.3	3.85	4.4	4.95	5.5	
Virtual line vects/m ² 20 275 900 325 350 375 400 425 TGW 45 113 124 135 147 158 169 180 192 46 115 127 138 150 161 173 184 196 47 118 100 141 153 165 177 188 204 48 120 132 144 156 168 179 122 204 217 50 125 138 150 163 175 188 200 213 51 128 141 153 169 182 195 208 221 Vinter Beans seeds/m ² 18 208 221 195 208 221 Vinter Beans seeds/m ² 104 115 127 138 200 216 225 505 99 110<	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6		1.8	2.4	3	3.6	4.2	4.8	5.4	6	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ON ANY	6.5		1.95	2.6	3.25	3.9	4.55	5.2	5.85	6.5	
45 113 124 135 147 158 169 180 192 46 115 127 138 150 161 173 184 196 47 118 130 141 153 165 177 188 200 48 120 132 144 156 168 180 192 204 49 123 135 147 160 172 184 196 203 50 125 138 150 166 179 192 204 217 51 22 130 143 156 169 182 195 208 211 Winter Beans seeds/m ¹ 18 20 22 24 24 24 24 24 24 27 24 211 Winter Beans seeds/m ¹ 18 20 22 24 27 28 28 271 16 16 16 16 16 16 16 16 16 <td< td=""><td></td><td>Cereals</td><td>seeds/m²</td><td>250</td><td>275</td><td>300</td><td>325</td><td>350</td><td>375</td><td>400</td><td>425</td><td></td></td<>		Cereals	seeds/m ²	250	275	300	325	350	375	400	425	
46 115 127 138 150 161 173 184 196 47 118 120 132 144 156 166 180 192 204 48 120 132 144 156 166 177 188 200 213 50 123 135 147 160 172 184 196 204 49 123 135 147 160 175 188 200 213 51 128 141 153 166 179 192 204 217 52 130 143 156 169 182 195 208 221 Winter Beans seed/m 18 90 99 106 110 12	Contraction (1997)	TGW										
47 118 130 141 153 165 177 188 200 48 120 132 144 156 168 180 192 204 49 123 135 147 160 172 184 196 209 50 125 138 150 163 175 188 200 213 52 130 141 153 166 179 192 204 217 Winter Beans seeds/m² 18 20 22 24 27 Tiow 156 169 182 195 208 21 Winter Beans seeds/m² 18 20 22 24 24 24 24 24 24 24 24 24 25 25 25 163 116 126 25 25 25 116 126 125 141 150 127 138 600 108 120 132 144 146 48 50 160 </td <td>1 1 24</td> <td>45</td> <td></td> <td>113</td> <td>124</td> <td>135</td> <td>147</td> <td>158</td> <td>169</td> <td>180</td> <td>192</td> <td></td>	1 1 24	45		113	124	135	147	158	169	180	192	
48 120 132 144 156 168 180 192 204 49 123 135 147 160 172 184 196 209 50 125 138 150 163 175 188 200 213 51 128 141 153 166 179 192 204 217 52 130 143 156 169 182 195 208 221 Winter Beans seeds/m ² 18 90 99 108 107 182 195 208 221 Winter Beans seeds/m ² 18 90 99 108 120 132 144 156 169 182 195 208 221 116 126 101 121 132 144 156 160	ALL ALLER	46		115	127	138	150	161	173	184	196	
49 123 135 147 160 172 184 196 209 50 125 138 150 163 175 188 200 213 51 128 141 153 166 179 192 204 217 52 130 143 156 169 182 195 208 221 Winter Beans seeds/mi 18 20 22 24 27 25 28 211 Winter Beans seeds/mi 18 20 22 24 27 27 184 195 208 221 Winter Beans seeds/mi 18 20 22 24 155 108 116 126 126 121 121 122 123 144 155 160 116 126 126 126 121 121 122 123 144 146 48 50 116 126 126 126 126 126 126 126 126 126	S. E. Carto	47		118	130	141	153	165	177	188	200	
50 125 138 150 163 175 188 200 213 51 128 141 153 166 179 192 204 217 52 130 143 156 169 182 195 208 221 Winter Beans seeds/mi 18 20 22 24 217 150 164 190 99 108 155 114 155 116 126 127 138 100 10	1 1 No. 1 1 1	48		120	132	144	156	168	180	192	204	
51 128 141 153 166 179 192 204 217 52 130 143 156 169 182 195 208 221 Winter Beams seeds/m* 18 20 22 24 105 106 117 105 106 117 105 114 105 106 110 100 110 120 125 130 116 126 132 144 115 127 130 115 116 126 132 144 115 127 130 115 127 132 144 115 127 130 115 127 132 144 115 127 130 115 127 132 144 145 145 145 145 145 145 145 145 145 145 144	AN THE REAL	49		123	135	147	160	172	184	196	209	
52 130 143 156 169 182 195 2.8 2.1 Winter Beans seeds/m 18 20 2.2 2.4 1.0	和这些问题的关系的问题	50		125	138	150	163	175	188	200	213	
Winter Beans seeds/mi 18 20 22 24 IGW 450 81 90 99 108 1:01526832771 450 90 100 110 120 12 124 1:01526832771 0:0 550 99 105 116 126 0:0 0:0 100 100 100 100 100 0:0	SIST WARRANT (SU	51		128	141	153	166	179	192	204	217	
Spring Beans seeds/m' 40 42 44 46 48 50 Spring Peans seeds/m' 40 42 244 46 48 50 Sol 0.99 100 110 120 132 144 145 15 116 126 126 132 144 145 132 144 145 132 144 145 132 144 145 14 15 127 138 144 145 126 127 138 144 145 14 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 144 145 146 142 <	STATISTICS IN A STATISTICS	52		130	143	156	169	182	195	208	221	
450 81 90 99 108 475 86 95 105 114 500 90 100 110 120 525 95 105 116 126 550 99 110 121 132 575 104 115 127 138 600 108 120 132 144 V Spring Beans seeds/m 40 42 44 46 48 50 100 108 120 132 144 155 127 138 100 100 100 100 100 100 100 100 100 100 100 100 100 110 120 132 144 100<	all as he	Winter Beans	seeds/m ²	18	20	22	24			/		
450 81 90 99 108 475 86 95 105 114 500 90 100 110 120 525 95 105 116 126 550 99 110 121 132 575 104 115 127 138 600 108 120 132 144 Spring Beans seeds/m² 40 42 44 46 48 50 TGW 100 100 200 209 216 225 475 190 200 209 219 228 238 500 200 210 220 230 240 250 525 210 221 231 242 252 263 500 220 231 242 252 263 500 220 231 242 252 263 500 220 231 242 252 263 600	AND AND AND	TGW								(<u>)</u>	
475 60 93 103 114 500 90 100 110 120 525 95 105 116 126 500 99 110 121 132 575 104 115 127 138 600 108 120 132 144 Spring Beans Seeds/m² 40 42 44 46 48 50 TGW	2 N. N. S. M. 1997	450		81	90	99	108		÷.		<u> </u>	71
500 95 105 116 120 120 120 120 120 120 120 121 132 e: seedorders@hlhltd.co.uk 500 99 110 121 132 144 115 127 138 600 108 120 132 144 116 127 138 100 110 121 132 144 116 127 138 600 108 120 132 144 116 127 138 100 116 126 127 138 100 116 126 127 138 100 116 126 127 138 100 116 126 126 126 126 127 138 100 120 120 120 120 120 120 120 120 120 121 121 132 144 126 132 140 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 <td< td=""><td></td><td>475</td><td></td><td>86</td><td>95</td><td>105</td><td>114</td><td>£.++</td><td>ι.</td><td></td><td>_</td><td></td></td<>		475		86	95	105	114	£.++	ι.		_	
550 99 110 121 132 132 600 108 120 132 144 www.hlhitd.co.uk Spring Beans seeds/m² 40 42 44 46 48 50 TGW		500		90	100	110	120			<u>v</u>		
575 104 115 127 138 www.hlhltd.co.uk Spring Beans seeds/m² 40 42 44 46 48 50 TGW 180 189 198 207 216 225 450 180 189 198 207 216 225 450 180 189 198 207 216 225 475 190 200 209 219 228 238 500 200 210 220 230 240 250 525 210 221 231 242 252 263 500 2200 231 242 253 264 275 550 220 231 242 253 265 276 288 600 240 252 264 276 288 300 755 199 154 160 165 171 176 300 162 168 174 180 186 192 <t< td=""><td>and William</td><td>525</td><td></td><td>95</td><td>105</td><td>116</td><td>126</td><td>100</td><td>e: seed</td><td>orders</td><td>@hlhlt</td><td>d.co.ı</td></t<>	and William	525		95	105	116	126	100	e: seed	orders	@hlhlt	d.co.ı
600 108 120 132 144 www.hlhltd.co.uk Spring Beans seeds/m² 40 42 44 46 48 50 TGW 180 189 198 207 216 225 450 180 189 198 207 216 225 450 200 210 220 230 240 250 500 200 210 220 230 240 250 525 210 221 231 242 252 263 550 220 231 242 253 264 275 575 230 242 253 265 276 288 600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW - - - - - - - 275 149 154 160 165 171 176												
Spring Beans seeds/m² 40 42 44 46 48 50 TGW T	CAMPAN SUPPLY	550		99	110	121	132			4	Æ	
TGW I	1 4 ch	575			115			1 N 1		Ę		
TGW I		575		104	115	127	138			Ę	nitd.co	.uk
475 190 200 209 219 228 238 500 200 210 220 230 240 250 525 210 221 231 242 252 263 550 220 231 242 253 264 275 575 230 240 252 264 276 288 600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW 75 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600	seeds/m ²	104 108	115 120	127 132	138 144		ww	Ę	nltd.co	o.uk
475 190 200 209 219 228 238 500 200 210 220 230 240 250 525 210 221 231 242 252 263 550 220 231 242 253 264 275 575 230 240 252 264 276 288 600 240 252 264 276 288 300 Spring Peas Seeds/m² 54 56 58 60 62 64 TGW 75 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans	seeds/m ²	104 108	115 120	127 132	138 144		ww	Ę	nitd.co	o.uk
525 210 221 231 242 252 263 550 220 231 242 253 264 275 575 230 242 253 265 276 288 600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW - - - - - - - - 275 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans TGW	seeds/m ²	104 108 40	115 120 42	127 132 44	138 144 46	48	W M 50	Ę	nltd.co	o.uk
550 220 231 242 253 264 275 575 230 242 253 265 276 288 600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW - - - - - - - - 275 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans TGW 450	seeds/m ²	104 108 40 180	115 120 42 189	127 132 44 198	138 144 46 207	48 216	W W 50 225	Ę	nltd.co	o.uk
575 230 242 253 265 276 288 600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW - - - - - - - - 275 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans TGW 450 475	seeds/m ²	104 108 40 180 190	115 120 42 189 200	127 132 44 198 209	138 144 46 207 219	48 216 228	WW 50 225 238	Ę	nltd.co	o.uk
600 240 252 264 276 288 300 Spring Peas seeds/m² 54 56 58 60 62 64 TGW - - - - - - - - 275 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans TGW 450 475 500	seeds/m ²	104 108 40 180 190 200	115 120 42 189 200 210	127 132 44 198 209 220	138 144 46 207 219 230	48 216 228 240	50 225 238 250	Ę	nitd.co	o.uk
Spring Peas seeds/m² 54 56 58 60 62 64 TGW - </td <td></td> <td>575 600 Spring Beans TGW 450 475 500 525</td> <td>seeds/m²</td> <td>104 108 40 180 190 200 210</td> <td>115 120 42 189 200 210 221</td> <td>127 132 44 198 209 220 231</td> <td>138 144 46 207 219 230 242</td> <td>48 216 228 240 252</td> <td>WW 50 225 238 250 263</td> <td>Ę</td> <td>nltd.co</td> <td>o.uk</td>		575 600 Spring Beans TGW 450 475 500 525	seeds/m ²	104 108 40 180 190 200 210	115 120 42 189 200 210 221	127 132 44 198 209 220 231	138 144 46 207 219 230 242	48 216 228 240 252	WW 50 225 238 250 263	Ę	nltd.co	o.uk
Spring Peas seeds/m ² 54 56 58 60 62 64 TGW - <		575 600 Spring Beans TGW 450 475 500 525 550	seeds/m ²	104 108 40 180 190 200 210 220	115 120 42 189 200 210 221 231	127 132 44 198 209 220 231 242	138 144 46 207 219 230 242 253	48 216 228 240 252 264	WW 50 225 238 250 263 275	Ę	nitd.co	o.uk
TGW I		575 600 TGW 450 475 500 525 550 575	seeds/m ²	104 108 40 180 190 200 210 220 230	115 120 42 189 200 210 221 231 242	127 132 44 198 209 220 231 242 253	138 144 207 219 230 242 253 265	48 216 228 240 252 264 276 288	WW 50 225 238 250 263 275 288	Ę	R nltd.co	o.uk
275 149 154 160 165 171 176 300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 Spring Beans TGW 450 475 500 525 550 5550 575 600		104 108 40 180 190 200 210 220 230 240	1115 120 42 189 200 210 221 231 242 252	127 132 44 198 209 220 231 242 253 264	138 144 46 207 219 230 242 253 265 276	48 216 228 240 252 264 276 288	50 225 238 250 263 275 288 300	Ę	R nltd.co	o.uk
300 162 168 174 180 186 192 325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 TGW 450 475 500 525 550 575 600 Spring Peas		104 108 40 180 190 200 210 220 230 240	1115 120 42 189 200 210 221 231 242 252	127 132 44 198 209 220 231 242 253 264	138 144 46 207 219 230 242 253 265 276	48 216 228 240 252 264 276 288	50 225 238 250 263 275 288 300	Ę	R nltd.co	o.uk
325 176 182 189 195 202 208 350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 TGW 450 475 500 525 550 555 550 575 600 Spring Peas TGW		104 108 40 180 190 200 210 220 230 240 54	115 120 42 189 200 210 221 231 242 252 56	127 132 44 198 209 220 231 242 253 264 58	138 144 207 219 230 242 253 265 276 60	48 216 228 240 252 264 276 288 62	50 225 238 250 263 275 288 300 64	Ę	R hltd.co	uk
350 189 196 203 210 217 224 375 183 210 218 225 233 240		575 600 TGW 450 475 500 525 550 575 600 Spring Peas TGW 275		104 108 40 180 190 200 210 220 230 230 240 54 149	115 120 42 189 200 210 221 231 242 252 56 	127 132 44 198 209 220 231 242 253 264 58 58	138 144 46 207 219 230 242 253 265 276 60 165	48 216 228 240 252 264 276 288 62 171	50 225 238 250 263 275 288 300 64 176	Ę	R hltd.co	o.uk
375 183 210 218 225 233 240		575 600 TGW 450 475 500 525 550 575 600 575 600 575 600 575 600 575 600 575 600 575 600 575 600 575 600 575 600		104 108 40 180 190 200 210 220 230 240 54 54 149 162	115 120 42 189 200 210 221 231 242 252 56 	127 132 44 198 209 220 231 242 253 264 58 58 160 174	138 144 46 207 219 230 242 253 265 276 60 165 180	48 216 228 240 252 264 276 288 62 171 186	50 225 238 250 263 275 288 300 64 176 192	Ę	hitd.co	o.uk
		575 600 TGW 450 475 500 525 550 575 600 575 600 575 600 575 600 575 600 575 500 575 500 575 500 575 500 575 600 525 530 5325		104 108 40 180 190 200 210 220 230 240 54 54 149 162 176	115 120 42 189 200 210 221 231 242 252 56 	127 132 44 198 209 220 231 242 253 264 58 58 160 174 189	138 144 46 207 219 230 242 253 265 276 60 165 180 195	48 216 228 240 252 264 276 288 62 171 186 202	50 225 238 250 263 275 288 300 64 176 192 208	Ę	Rild.co	o.uk
		575 600 Spring Beans TGW 450 475 500 525 550 555 550 575 600 Spring Peas TGW 275 300 325 350		104 108 40 190 200 210 220 230 240 54 149 162 176 189	115 120 42 189 200 210 221 231 242 252 56 56 154 168 182 196	127 132 44 198 209 220 231 242 253 264 58 58 160 174 189 203	138 144 46 207 219 230 242 253 265 276 60 	48 216 228 240 252 264 276 288 62 171 186 202 217	WW 50 225 238 250 263 275 288 300 64 176 192 208 224	Ę	Rild.co	o.uk

Units: kg/ha - The seed rates in kg/ha highlighted assume 100% establishment.

To amend these figures to reflect your own expectations of establishment (to include germination and field losses), multiply the relevant figure (from the seed chart above) by 100 and divide by your **expected establishment percentage**.

HELIX & HUTCHINSONS REGIONAL TRIAL CENTRES

Helix & Hutchinsons

Regional Trial Centres

Stuart Hill (Hutchinsons Head of Technology and Innovation) introduces our knowledge transfer opportunities for 2021.

As we know, Corona virus rules and restrictions challenged the traditional approach to demonstration last year. This allowed an opportunity to be more innovative in our approach with the use of online seminars, videos and podcasts in the Fieldwise 'LIVE' format to demonstrate the important and exciting developments at Helix farms and Regional trial centres. Ultimately the topics and technologies we cover have to add value to you as growers and answer the 'so what' questions.

This year presents a different challenge again, in that the restrictions as we move through the spring and summer will, fingers crossed, be relaxing. It is vitally important we take into account risk and therefore our demonstrations will take various formats, such as Fieldwise LIVE, individual tours, small groups and in some instances structured open days.

We can use all these together and rest assured whichever delivery approach is used, we will always have your safety in mind.

We are in a dynamic period of farming brought on by evolving politics, Brexit, disruptive markets and

technologies, transparency, financial instability, soils focus and the need to address climate change. All these factors link together to evolve solutions and this is at the core of the Helix concept and our Helix farms.

Helix concept and farms:

Helix is all about adding value to the grower, financial and environmental and consequently sustainability. The aim is to develop new technologies that deliver more precise data that, along with agronomy interpretation and knowledge, then deliver added value advice.

There are **five focus areas** that we are concentrating on and asking ourselves what the key challenges are in these areas. These are **data and sustainability**, **improving soils, optimising nutrition, genetic benefits and integrated crop management**, which encompasses climate and environment.

Early farm scale development takes place at our Helix national development farm over in Northamptonshire, courtesy of Andrew Pitts. Further development and demonstrations are delivered at our emerging Helix regional farms, of which we currently we have four - Helix East, Helix North, Helix Borders and Helix Central. Further farms will come on board over the next 2 years.

In conjunction we are monitoring the increasingly more strategic relationship between the grower and agronomist and how agronomy evolves into a more transparent, targeted, efficient and justified approach.

32

Soli Texture Map

The first stage on farm is understanding the farm's current strategic position. Therefore, key criteria such as productivity, nutrition status, environment, soils, to name but a few, are key measurements as a start point. Achievable targets can then be agreed and a strategy put in place to accomplish those targets.

This last year has seen the development and introduction of technologies such as the climate system, TerraMap soil and nutrition mapping, BYDV, blight and growth stage prediction models, a field diary / scout app and cost of production mapping. Ultimately these need a central system to work through and that is where the **Omnia** platform comes in.

This year we are continuing to investigate and develop novel biological seed treatments and crop protection, Nitrogen and phosphate use efficiency, nutrition technologies, a farm planning tool, carbon mapping and improvement, Integrated Crop Management techniques and transparency, along with increasingly targeted agronomy and yield prediction.

We will continue to demonstrate a combination of the technologies delivered last year, alongside the new developments, at our Helix regional farms - so there are plenty of exciting options to see.

Fieldwise LIVE will again bring this development to life for you on our websites and social media platforms, so keep an eye on the Hutchinsons and Helix websites to keep up to date.

Regional trial centres:

The Regional trial centres will contain a varied combination of small plot and larger block trials, which help to underpin our broader farm scale work at the Helix farms.

Our theme this year will be around Carbon and ultimately how we can improve carbon sequestration and management. Carbon is impacted by many aspects of crop production and these challenges are focus areas at our Helix farms.

All of the regional centres have winter wheat variety trials linked into a fungicide programme. This enables bespoke agronomy and also allows us to discuss risk management related to cropping choice, rotation and variety choice - all part of Integrated Crop Management.

We are researching seed rate influences on establishment, subsequent crop management and the impact on yield. This includes assessment of Hybrid wheat and blends, in comparison to conventional varieties.

There are also centres working on soils and nutrition, both a significant part of the overall carbon jigsaw.

As with Helix technology farms, you can see regular video updates from the Regional trial centres as part of Fieldwise LIVE on our websites and social media. This is a great opportunity to try different methods of demonstration and allow for greater discussion on these very important areas for farm sustainability. Fingers crossed, restrictions permitting, we look forward to seeing you during the year.

Follow progress at our demonstration sites via Fieldwise Live – view all the latest information on our websites www.helixfarm.co.uk & www.hlhltd.co.uk 2

3

9

1

5

Helix Demonstration Farms and Regional Trial Centres 2021

- 1 Carlisle
- 2 Alnwick
- 3 Warden Farming, Grayingham
- 4 Trevone
- 5 Ludlow6 Harleston
- 7 Stowbridge
- 7 Stowbridge
- 8 Fenland Potato Demonstration
- 9 Sutton Bonington
- 10 Brassica Demonstration
- 11 Heli National Technology Farm
- 12 Heli East Demonstration Farm
- 13 Heli North Demonstration Farm (NEW)
- 14 Heli Central Demonstration Farm (NEW)
- 15 **Heli** Borders Demonstration Farm (NEW)

t: 01526 832771 e: seedorders@hlhltd.co.uk www.hlhltd.co.uk

7 (8

6

www.hihltd.co.uk

Catch & Cover Crop Mixes

Catch and cover crops are now increasingly used across all sectors of crop production to improve key soil functions, add organic matter and cycle nutrients for the following crop.

Our agronomists have considerable experience of using these crops to benefit our customers and provide the correct solution to match their objectives. Hutchinsons offers its own range of catch and cover crop mixes, updated and extended for 2021. These mixes have been constructed around the reliability of the individual species and their ability to deliver key agronomic advantages and improvements in soil health.

Technical justification has been the driver in the selection of each species and the key aim with each mix has been to provide as much diversity as possible, while considering cost, reliability and confidence in performance.

Our core over-winter mixes all use the same eight species, with ratios of each adjusted according to the situation in which they are placed. Working consistently with the species ensures confidence in delivering the intended outcomes. Our catch crop mixes present a great opportunity for those with more restrictive rotations to gain improvements in soil health, but also an additional opportunity for those already using cover crops.

For 2021 new specialist mixes have also been added, to better meet the needs of our customers - offering something for everyone. Please always speak to your Hutchinsons agronomist for advice on selecting and getting the best from your cover crops.

MaxiCover

A multi-purpose over-winter mix which suits a wide range of situations and soil types. MaxiCover provides fantastic diversity in root growth. Its varied root depth and architecture helps to aggregate soil and create drainage channels. Various types of plant canopy offer excellent soil armour and weather protection. The mix contains legumes, forbs and brassicas which provides a varied food source for soil microbes. The diversity of the mix and a low inclusion rate of each plant type reduces the risk of exacerbating rotational pest or disease issues.

MaxiN

MaxiN is suitable for a wide range of situations and soil types but also offers the opportunity to maximise nitrogen fixation with a high ratio of legumes. With the correct management techniques, rates of manufactured nitrogen can be reduced in the following crop.

Hairy vetch has been shown to produce a higher biomass, more quickly than other vetch and clover species. Crimson clover is fast to emerge and grows vigorously.

The brassica content of this mix is significantly lower than in MaxiCover, but the diversity of roots and canopy remains, delivering all of the same benefits as the MaxiCover with the addition of high N fixation.

MaxiRooter

MaxiRooter can be used to alleviate minor shallow compaction or slumping issues by favouring species with larger, vigorous root systems.

The aim with MaxiRooter (more so than with the other mixes) is to save a cultivation pass, using 'roots not iron' to repair damage and create a friable soil for establishment of the following crop. Careful examination of the soil prior to planting this mix will help to determine whether the intended outcome is achievable, or if targeted subsoiling should be used alongside this cover crop.

MaxiVeg

MaxiVeg has been designed for those who do not want to use brassicas in cover crop mixes. For example, those who regularly grow brassica cash crops in rotation and have associated issues with soil borne pathogens must avoid brassicas in cover crops, so that the problem does not get worse.

This mix is brassica free but keeps the remaining five species of the over-winter range and so still provides a good level of plant diversity and therefore a number of key benefits, including nitrogen fixing legumes.

MaxiGraze

All the Hutchinsons catch and cover crop mixes can be grazed, but for those wishing to strike a balance between improving soil health and providing better forage for grazing, MaxiGraze is the ideal choice.

Single species forage crops, grown over-winter deliver very few of the key soil health benefits that a multi species cover crop does. However, where growing winter forage for sheep or cattle is important, this mix offers both options.

Three brassicas, forage rape, smart radish and stubble turnip provide the bulk of the forage in this mix and due to their three different growth habits, canopy and root types, they still satisfy the requirement for diversity within the mix. Winter vetch and crimson clover provide quality forage as well as nitrogen fixation and further diversity of root growth. Linseed, whilst not as palatable, will also be grazed and provides all-important soil stability from its fine, fibrous root system.

MaxiSpectrum

MaxiSpectrum delivers maximum species diversity with 15 species from the following plant families: forbs, brassicas, legumes, cereals, grasses and chenopods.

This mix will provide many different types of canopy architecture, root structure and growth habit which in turn provide a multitude of benefits to the soil, the environment and the following crop. Roots will explore the soil to different depths, helping to create excellent friable soil and nutrient cycling should be enhanced for the benefit of the following cash crop. Different root exudates interact with soil microbes, resulting in an uplift of the total microbial population as well as supporting a more diverse population.

MaxiFruit

Cover crops are used in combinable crop systems to improve soil function, raise organic matter, improve fertility and build biological activity. This in turn supports healthy, nutrient dense crops which are better able to fight off pests and diseases and cope with extremes in weather.

Fruit crops are no different and the added challenge in orchards, hop yards and vineyards is that the soil between the fruit rows is frequently run on by machinery, which can cause compaction problems.

MaxiFruit has been developed to provide all the soil benefits mentioned above, as well as to hold up machinery better through its deep and diverse root types. It is a perennial, grass-based mix, but includes a number of legume and herb species.

MaxiInterCrop

MaxiInterCrop is designed to provide shorter term summer cover, in a variety of situations, on all soil types.

Most years, this mix may be used in front of an autumn sown cash crop either after carrots harvested winter/early spring, after vining peas or after wholecrop cereals (AD or feed), to name a few examples.

Again, this mix contains forbs, legumes and brassicas but also includes a C4 plant in the form of millet, a warm season grass species. C4 plants thrive in the warmer summer months and develop fantastic root systems in a short period of time as well as fixing significantly more carbon than C3 plants. High levels of sugary root exudates offer a great food source for soil microbes. C4 plants also have a high drought tolerance.

MaxiCatchCrop

MaxiCatchCrop can be used on any soil type and is designed to fill a gap of approximately six - eight weeks between cash crops, e.g., between Oilseed Rape and Winter Wheat providing a way of capitalising on every opportunity in the rotation to introduce diversity and living roots.

The three chosen species in the mix, Buckwheat, Berseem clover and white mustard, are fast to establish and grow away quickly, a very important characteristic considering the short growing window.

Maxilmpact

MaxiImpact is designed to do exactly that, make a visual impact. The six species chosen for this mix produce a range of vibrant colours during flowering to deliver a powerful visual impact in the landscape as well as providing a pollen and nectar source, a haven for birds, pollinators, beneficial insects and natural predators.

There are a number of opportunities to utilise this mix across the farm including along headlands of cash crop fields to encourage beneficial insects, or as part of a wildlife corridor through the farm.

Again, diversity of species is delivering multiple benefits to both soil life and the life above the soil. A range of flowering periods will provide high quality habitat throughout the summer.

Spring Cropping Overview RECO

RECOMMENDED LIST CHART PAGE 54

Cereals

In spring 2021, **Spring Barley** is currently the key component in this section of the rotation, as the most competitive of the spring cereals options for the control of black-grass (Spring wheat, although being less competitive in nature, still has a place in certain rotations).

There was of course a slip in hectares drilled, back to a more conventional spring model, after last year's record crop entered and this will invariably be now considered the norms.

Spring Barley: –

In recent years **RGT PLANET** has taken the largest proportion of spring barley area, **LAUREATE** is becoming increasingly popular and has out yielded Planet in the last two seasons. **PROPINO** has seemingly had its day as it becomes outclassed and superseded. Varieties **LG DIABLO**, now fully approved for malting and distilling, and most recently **COSMOPOLITAN**, are also impacting on these previously popular, consistent performers.

Newer varieties include **SY SPLENDOR** (brewing) and **SY TUNGSTEN** (potential for brewing and malt distilling) are provisionally approved by MBC.

New variety **SKYWAY** offers potential brewing ability and is under test by MBC. Aside from this, it offers the highest UK yield and the highest yield of any variety in the West, coupled with good resistance to brackling and decent straw length for the feed sector, possibly?! It is not commercially available until spring 2022, but definitely one to put a name against.

Feed varieties - **KELIM** still sells well and has had a favoured following in the north west. However, the malting varieties grown as "feed" are capable of the highest yields and, unless straw is the main requirement, can be every bit as effective.

Spring Wheat: -

MULIKA remains the most widely grown variety and the only group 1, but at now significant yield deficit and should only be considered if a guarantee of grade 1 quality is a given.

KWS COCHISE, KWS CHILHAM, KWS GIRAFFE and **KWS WILLOW** provide alternatives in the group 2 sector. Giraffe will be more widely available in spring 2022.

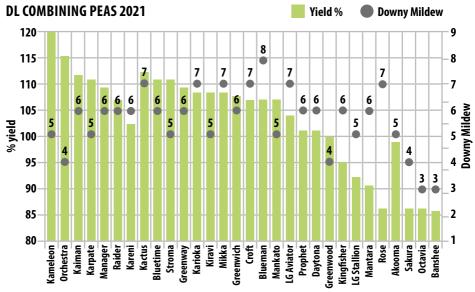
Some growers are now considering more risk averse alternatives - the Hard Feed Wheat varieties. **KWS KILBURN** and **KWS ALDERON** have been more widely grown from this group 4 sector. Two of the newest varieties to the scene are **KWS TALISKER** and **HEXHAM** from Senova. They have seen limited uptake due to volume availability. New in the group 4 hard group and again, like Giraffe, not widely available until spring 2022, is **WPB ESCAPE** which is now the highest yielding spring wheat available.

Spring Oats: -

Little change in this section as **CANYON, ASPEN** and **WPB ELYANN** were the market leaders in spring 2021, where seed availability and quality were both at a premium.

We have seen more interest in the newer varieties **DELFIN** and **ELISON**, as they become more widely available, but restricted volumes of seed have meant that their market share has not as yet grown significantly.

Spring Cropping Overview DESCRIPT


DESCRIPTIVE LIST CHART PAGES 56 - 57

This year marks a distinctive change in PGRO variety trials as the data moves from the long-established Recommended list (RL) to a Descriptive list (DL). The DL list uses a five-year rolling average data set like the old RL, year 1 and 2 coming from national lists, year 3 being the first year on the list and by year 5 are established. The method of calculating the mean is from a more robust basket of varieties that have been in trial for 4-5 years across all types. The recommendation category has now been removed and replaced by the number of years in trials, or when first listed in RL or DL lists.

Pulses in 2020

Combining Peas

The extreme weather conditions of 2020 impacted pulse yields more than most. The lack of rain post drilling gave way to uneven emergence - the impact felt most heavily on winter beans. Late season powdery mildew impacted heavily on peas, whereas rust impacted on spring beans. Hence RL yields have been generally lower and so much more variable this season.

Tables: taken from the PGRO Descriptive List 2021.

The control yield from year 4 & 5 varieties (3.85t/ha), yield differences of less than 10.5% are not statistically significant.

Six trials went through to harvest in 2020, the highest yielding one was in Hampshire last year with a yield of 3.71t/ha, which says everything of last season's yield potentials.

Combining peas:

There has been a change in classification of peas this year, aligning more to international standards and in moving to a descriptive list. Large blues are now listed as Green/Blue and whites as Yellow/White, the Maple and Marrowfats classifications remain unchanged. There have been seven additions to the list this year (four greens/blue, one marrowfat, two yellow/white and two withdrawals by the breeders, Bluetooth (LS plant Breeding) and Vertix (Senova) both blues.

Green/Blues (large and small blue combined into one): Generally, the largest sector if gauged by the seed production, at around 50% of the market.

- Additions include Stroma (111) NEW LS Plant Breeding, high yielding and one of the highest TGW in the group at 303g. Kiravi (108) NEW from Senova. Greenway (109) NEW and Mikka (108) NEW from IAR Agri both very similar in terms of agronomics.
- The highest yielder in this category is now a variety in year four in trials **Kactus (112)**, followed by **Bluetime (111)** year 5 and **Stroma (111)** year 3.
- Kactus (112), Greenwich (107) and LG Aviator (103) all received listings last year. Kactus being the highest yielding of all three with good agronomics as well (shortness of straw, standing ability and downy mildew rating). Greenwich with a grain size of 324g is the largest of the group (potentially suited to micronizing).
- Mankato (106) KWS and Croft (106) LS Plant Breeding move to P3 recommendation.
- Bluetime (111) the second highest yielder on the list, Karioka (108) and Blueman (106) all progressed to recommended last year. Blueman stands out in its rating of 8 to downy mildew, it also has a high resistance to powdery mildew.

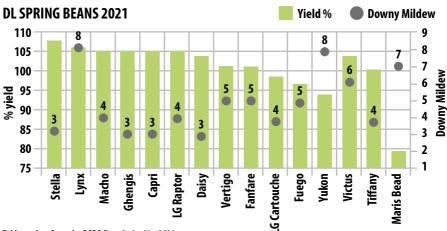
Marrowfats: the second largest sector if judged by seed production at around 40% of the market.

- **Akooma (97) NEW** from LS Plant Breeding with a yield of 11% above Sakura and has very large seed. It is a tall variety with a relatively low rating for standing. A slightly higher rating for downy
 - mildew, as well as being a bold seeded variety.

- Sakura (86) is fully recommended.
- Banasee (85) Senova and Octavia (86) IAR Agri continue to year four of trials, both have short to medium straw, better standing ability than most marrowfats and are late maturing, with low ratings for downy mildew.

Yellow/White-seeded:

- Additions for 2021 are Kaiman (112) NEW from Senova a tall variety, yet a good stander, although a late maturing variety, and Raider (106) NEW from IAR Agri, good all-round agronomics apart from seed size at 265g TGW.
- Kameleon (120) Senova a P4 variety tops the list followed by Orchestra (105) LS Breeding.
 Kameleon has exceptional yields, out yielding its nearest rival by 5%. With good standing ability and earliness to maturity, it has some outstanding credentials. Its grain size makes it suitable to the whole grain packet and split pea market, as well general suitability to the animal feed sector.
 Orchestra is a medium plant height with moderate standing ability, with a medium maturity. The TGW of 308g will make it attractive to some high value niche markets. Its downy mildew rating however is only 4.


Maple peas:

• Mantara (90) and Rose (86) remain as recommended.

DESCRIPTIVE LIST CHART PAGE 58

Spring Beans

Tables: taken from the PGRO Descriptive List 2021.

The control yield from year 4 & 5 varieties (4.47t/ha), yield differences of less than 6.3% are not statistically significant.

The descriptive list is represented by eight trials taken to harvest in 2020, yields ranged from 6.29t/ha in North Yorkshire to 1.88t/ha in Lincolnshire.

We have seen the addition of seven new varieties to the list this year and one withdrawn.

Stella (108), Capri (105), and Daisy (104) all NEW from Saaten Union were added to the descriptive list for 2021. Stella (108) becomes the highest yielding variety on the list 2% above Lynx (106). Lynx was previously the highest yielding variety from 5 years of trials. Capri and Daisy have similar characteristics to Stella, although a higher protein content is offset by a smaller seed size.

Two **NEW** varieties from Limagrain, **LG Viper (108)** now vying for top spot alongside Stella. It ticks all the boxes agronomically. **LG Sphinx (103)** was also added, a little behind LG Viper.

Two **NEW** varieties from LS Plant Breeding have been included, both are low LVC varieties (Low Vicine/ Convicine). **Allison (102)** only 2% behind Victus, an early maturing, short variety with good standing ability, although a low rating for downy mildew. **Bolivia (104)** a slightly later maturing variety with similar agronomic characteristics, with better downy mildew resistance, although an inferior seed size. A new sub-category was established last year (LVC) linked to low Vicine and Convicine. These are glycosides, anti-nutritional compounds, they hamper the development of fava beans as a worldwide food and feed crop. High LVC's in beans cause a disease called favism, a hemolytic response to the consumption of fava beans in people who have an inherited absence of the enzyme glucose-6phosphate dehydrogenase (G6PD) in their red blood cells. It is estimated more than 100 million people worldwide are genetically deficient in G6PD. The incidence of this genetic deficiency is as high as 50% in some populations. **Victus 104** and **Tiffany 101** were recommended last year and are now joined by **Bolivia (104)** and **Allison (102)**.

Only **Mallory** was withdrawn from the spring bean list by the breeder.

Maize Variety Options

Defra statistics illustrate the rising popularity of maize, showing that over the past five years the UK planted area has increased from less than 190.000 ha to around 226.000 ha in 2020. This has increased the demand for seed in both traditional mixed farming or livestock-based maize growing areas, as well as in arable regions now growing maize for biogas and grain production.

Variety selection is challenging, but our portfolio is selected from material produced by top breeders, with performance data supplemented by our regional trials and feedback from our national network of agronomists. This enables us to offer independent advice on the range of varieties best suited to individual farm location and conditions.

t: 01526 832771 e: seedorders@hlhltd.co.uk www.hlhltd.co.uk

					\checkmark		
	Best-selling	varieties fo	r 2021 b	y matu	rity clas	5	
			FAO	FORAGE	BIOGAS	GRAIN	
	Very early	PEREZ	160	X	X		
	maturing	DUXXBURY	160	X			
	varieties	ARTIKUS	160	X	X		
		AUTENS	170	X	X	X	
Regional maize		PROSPECT	170	X	X	X	
♥ trial site location	Early maturing	P7326	180	X	X	X	
	varieties	ABILITY	180	X	X		
		P7034	190	X	X	X	
		AGIRAXX	190	X	X		
		P7524	200	X	X		
Real of the second s	Intermediate	KEOPS	210	X	X		
	maturing	MOVANNA	210	X	X		
and the second	varieties	P7948	210/220	X	X	X	
		MANTILLA	220		X		
	Late	NEUTRINO	230	X	X		
A State of the second s	maturing	INDEXX	240		X		
	varieties	AMAROC	240		X		
		的复数计划	1.10	1.1.40	e e i	i aan	a series
Hutchinsons have access to varieties from	🚺 R A	GT	SIGS				
all of the main maize breeders including:	Æ	ORTEVA	1	KWS		Mag .	
Elsoms 🕉 🕉 🗛	K Graine	eed Ltc	1	9	5 20		
42 The Seed Specialists	Grains	eeu Ltt		-	Nex.	Sec.	

TerraMap

High Definition Soil Mapping

Hutchinsons would like this opportunity to explain their innovative and affordable soil analysis system, that sets a high standard for accuracy in precision agriculture. Today's precision farming requirements demand greater accuracy!

TerraMap is a revolutionary system that delivers the highest definition field maps existing today.

TerraMap gives growers a deeper understanding of the variability in fertility and textural-based properties of their soil, offering much more than traditional soil measurement practices.

TerraMap delivers the highest definition and most detailed field nutrient maps obtainable today. Data is proven to be reliable and repeatable which allows growers to make the best decisions for their soil and nutrient management, with confidence.

For decades, low definition soil tests have only scratched the surface with only 1 to 2 samples per hectare. Results between these points can vary significantly, with results that can often be misleading, especially for variable rate applications. Other scanning systems can be adversely affected by soil moisture, compaction, cultivations or vegetation cover.

Using cutting edge gamma ray detection technology, **TerraMap** gives growers the most in-depth analysis of their soil with a resolution of over 800 points per hectare. High definition nutrient maps are generated based on the analysis results which can be incorporated into **Omnia** to create variable rate application plans for seed and fertiliser inputs.

TerraMap measures and maps all common nutrient properties including pH, phosphorus, potassium and magnesium, along with additional micro & macro nutrients, soil texture and other properties such as organic matter and CEC.

TerraMap also has the ability to map soil carbon content, an important consideration for the future.

Available exclusively from Hutchinsons, the **TerraMap** service has been successfully proven with farmers in the UK for the past 3 years.

43

Environmental Services

As we are drip fed more information about the future of public funding for farmers, it is becoming clear that the environment is going to be at the forefront of any scheme, which is why we are suggesting getting into a scheme now, rather than waiting until the launch of ELMS in 4-5 years.

No matter what level you decide to go in at, the experience of managing options and running an environmental scheme on your farm, that is providing both 'public good' and 'natural capital', is the best preparation you can do for ELMS. They will not be re-inventing the wheel when it comes to the scheme options, so many of those currently available in Countryside Stewardship (CS) will more than likely be available in ELMS.

ELMS is likely to reward farms that are providing the most biodiversity. As this is something that cannot increase overnight, we suggest exploring some of the options already available to start building habitats now. For example, planting AB8 wildflower margins (£539/ha) is a great way to take marginal areas out of production and increase biodiversity, plus it will give you a long-term option that you can roll straight into ELMS (without having to re-establish).

Furthermore, you can start to use some of the options in Countryside Stewardship to help fund changes in the way you farm, or perhaps fund something you are already doing. Options for grass leys, such as AB15 two-year legume fallow (£522/ha) or GS4 legume and herb-rich sward (£309/ha) represent excellent opportunities to try something new in the rotation. There is even an option for SW6 overwintered cover crops (£114/ha), which will help to support your move towards conservation agriculture - something we know will be encouraged in ELMS.

Code	Your Countryside Mix	Spec	Bag Size kgs	kgs/ha
AB1	Nectar Gold Mix	Nectar Gold Mix	12	12
AB8	AB8 Flower-Rich Grass Mix	Long lasting quality mix, short	20	16-20
AB8	BGM4 - with flowres	term mix, unlikely to last more than 5 years	20	20
AB9	WBS1	Budget Mix	20	40
AB9	Feed & Cover	Wildlife mix	20	40
AB9	WBS4	Game mix	20	40
AB9	WBS2	Two year mix	20	40
AB9	Northern WBS1	North and early drillers	20	40
AB9	Additions	Kale - Gruner Angeliter Sunflowers - treated Phacelia	1 5 2	2-3 4 0.5
AB15	2 yr Legume mix	no grass	20	20
		with grass	20	30
AB16	Autumn Bumblebird mix	cheaper mix with no perenial flowers	20	40
		premium mix with no perenial flowers	20	40
GS4	Legume and herb rich		20	32
SW1, SW3, SW4	BGM1 tussocky grass	with cockfoot	20	20
SW1, SW3, SW4	BGM2 tussocky	without cockfoot	20	20

With warmer weather fast approaching, many of you will be thinking about drilling your CS options this spring - our advice is to wait until perfect conditions before drilling anything. It is important to remember that you are not trying to gain yield from early establishment with these mixes, as you might with spring crops, it is far more important to wait for warm, moist soils and consolidated, clean seedbeds. Some species in the mixes will not even grow unless soils temperature is 14 degrees C and rising, which we do not often see until late May, therefore patience is the key to successful CS option establishment. The table above shows a few of the environmental stewardship mixes that Hutchinsons can offer, please get in touch with your agronomist for a quote and management advice.

t: 01526 832771 @ e: seedorders@hlhltd.co.uk @ www.hlhltd.co.uk

> www.hlhltd.co.uk/our-services/ environmental-services/

RECOMMENDED LIST CHARTS

N
\geq
2
2
9
5
<u>-</u>
D
1
\leq
÷
-IS
nmended
p
P
Ĭ
n
0U
Ŭ
Re
Ω
Ο
H

													DL Candidate	
AHDB														
DESCRIBED	ġ	\$	8	4	200	8	9			020	9	NON OF		
	Caller,	really a	and the second	A BAR	and a	N.	all a	See.	opt	. and	the second	e.	A.	
Grain yield (as % treated control)	v	NEW	U	NEW	NEW		NEW							
Fungicide-heated (10.7 this)	101		8	1040	[96]	16	[96]	8	3	a	16	8.5		
Number of trials	10	4	10	y	40	10	w	ę	8	80	9			
Agronomic features														
(w) Budgud	101		10		100	181	- addres	[0]	Ð	[16]	101	4.7		
Straw longth (cm)	101	-	111	[204]	[104]	118	[251]	8	[96]	[124]	101	6.6		
Ripersing (days +/- Agostero, -ve = earlier)	[1.4]	3	10	lol	[1]	[1]	[1+3]	[0]	101	60	loi	2.6		
Grain quality													1	
Specific weight (kg/h)	74.6	*	0/44	list	[ared]	73.6	[1:6/]	74.4	23.0	75.8	75.4	1.6		
Protein content (%)	12.2	st.	11.8	[12.0]	[12.5]	12.1	[12.8]	12.3	12.7	12.7	12.2	9.6		
Disease resistance													111	-
Yellow rust (1-9) - see note below	80	*	9	E	[2]	1	12	4	0	ø	1	1.5	14.5	
Breeden/UK contact														
Breeder	Dank	Desp	Lant	Lant	Nong	Deep	Dark	Hod	Hod	401	Lant		1.41	
UK contact	Sen	10	Sen	Sen	su	8	Sen	Dat	Det	Sen	Sen		Sen	6.2
Status in DL system														1
Year first listed	18	54	14	21	51	12	21	12	20	20	=		1	
DL. status	14	H		Ы	Id	0	£	240	P2	52			i.	

Varieties no longer listed: Securo.

The data in this table are provided for information only and do not constitute a recommendation. \$ Data cannot be published as variety has not completed National List testing.

C = Yield control (for current table) = Vareyo more of the current table) = Vareyo more of the current table) = Vareyo more of the current table in RL, insuita Dass = Dareko Hodonal Roualin, Poland (danteo, = Planet year of interg Pla = Finot year of interg P2 = Second year of Interg P2 = Second year of Interg
--

Hod = Hodowla Rosin Strzelce, Poland (hr-strzelce.pl) Sen = Senova (semova.uk.com) SU = Sasten Union UK (saaten union.ce.uk) Lant = Larbmannen SW Seed BV Nord = Nordsast, Germany (nordsast.de) IGP = IG-Pflanzenzucht, Germany moo

LSD = Least significant difference Average LSD (5%); Varieties that are more than one LSD apart are significantly different at the 95% confidence level

Winter triticale rust ratings

The PL. 2021/22 now features disease ratings for winter triticate (yellow rust). As Described, not Recommended, variaties, less information is available to catoulate the ratings. As a result, these ratings use a six-year dataset. As for all ratings, statistical significance (LSD) should be taken into account when deciding if varieties have different susceptibility to disease.

AHDB Recommended List Winter Rye 2021/22

P.B

S.C.

No.

DL Candidates

Hutrid.

Inel I

8 0

10.2

New region New reg	Honding Honding <t< th=""><th>DESCRIBED</th><th>~</th><th>9</th><th></th><th></th><th></th><th>4</th><th></th><th>2</th><th></th><th>(BOG)</th><th></th><th>50</th></t<>	DESCRIBED	~	9				4		2		(BOG)		50
a. Y. Wanakid contraction 111 100 101 <t< th=""><th>101 101<th>Variety type</th><th>Add Broch</th><th>Hybrid C.</th><th>Hybrid Hitter</th><th>HANG</th><th>Hybrid C.</th><th>Hord Press</th><th>A Party</th><th>8</th><th>No. 1</th><th>4</th><th>Real .</th><th>San .</th></th></t<>	101 101 <th>Variety type</th> <th>Add Broch</th> <th>Hybrid C.</th> <th>Hybrid Hitter</th> <th>HANG</th> <th>Hybrid C.</th> <th>Hord Press</th> <th>A Party</th> <th>8</th> <th>No. 1</th> <th>4</th> <th>Real .</th> <th>San .</th>	Variety type	Add Broch	Hybrid C.	Hybrid Hitter	HANG	Hybrid C.	Hord Press	A Party	8	No. 1	4	Real .	San .
oright filter 11 10 <th10< th=""> 10 10</th10<>	104 100 101 100 101 100 101 <td>Grain yield (as % treated control)</td> <td></td>	Grain yield (as % treated control)												
• 1	1 1 1 1 1 1 1 1 1 - 13 1 1 1 1 1 1 1 1 - 13 - 13 13 13 13 13 13 1 - 13 14 13 13 13 13 13 13 14 14 14 14 14 14 14 13 13 13 13 14 14 14 14 14 14 14	Fungicide treated (3.4 t/ha)	111	100	104	100	101	100	8	8	8	52	•	•
Number 101<	1 21 21 21 11 22 14 18 12 12 12 12 13 14 0 0 0 12 12 13 13 13 10 23 12 12 12 13 13 13 10 23 23 23 23 23 23 23 24 4 13 14 17 16 73 73 73 73 13 03 14	Number of triats		2			13	2		-	5			
International and the second	· · Ind [20] · [11] [17] [17] · ·	Agromomic features												
Initial constraints 128 127 134 128 127 134 136	134 128 127 130 126 130 131 <td>Lodging (%)</td> <td>342</td> <td>10</td> <td>3</td> <td>£</td> <td>1161</td> <td>102</td> <td>ţ</td> <td>12</td> <td>117</td> <td>11</td> <td>38</td> <td>3</td>	Lodging (%)	342	10	3	£	1161	102	ţ	12	117	11	38	3
	+1 0 0 0 1 - 1 \$13 100 8.8 0.3 10.0 10.3 10.2 0.4 - \$200 180 2.80 2.37 2.30 2.37 2.30 0.3 0.4 - \$717 7.4.6 4 4 3 3 4 4 1.0 - \$6 Hone NS 30 Hone Hone Hone Hone 1.0 -	Straw length (un)	126	121	104	120	127	120	126	130	108	6.0	4	ç
(N) 01	13 100 38 38 100 36 38 300 103	Ripering (days +r- SU Mephato, -ee = earlier)	Ŧ		Ŧ	0	•	0	-	•	0	1.4	8	24
(N) 87 87 87 80 80 100 103 103 0.43	9.5 10.0 9.8 0.8 10.0 10.2 0.4 - 777 710 160 730 720 720 720 64 - 777 160 730 720 720 720 720 64 - 4 4 4 3 3 3 4 4 - 6 Holes NS SU Holes HS 3 4 4 - 9 Holes NS SU Holes HS 3 4 4 10 -	Grain quality												
Number 200 200 200 101 200 201 200 102 201 201 102 101<	200 100 340 223 220 217 200 113 213 200 113 <td>Pronein content (%)</td> <td>9.7</td> <td>10</td> <td>5.6</td> <td>10.6</td> <td>9.6</td> <td>9.8</td> <td>0.01</td> <td>10.5</td> <td>10.2</td> <td>9.4</td> <td>37</td> <td>v</td>	Pronein content (%)	9.7	10	5.6	10.6	9.6	9.8	0.01	10.5	10.2	9.4	37	v
Notion TT2 Tt3 Tt3 Tt3 Tt3 Tt3 Tt3 Dt3 Lt1 Lt1 <thl1< th=""> <thl1< td="" thr<=""><td>777 766 77.5 77.9 78.0 78.3 0.8 - 4 4 4 3 3 4 4 10 - N Holes NS 80 Holes NH Holes NH NH N Holes NS 80 Holes NH Holes - - - SU Dat SU 80 SU SU SU NH Holes NH NH</td><td>Happerg Falling Number</td><td>22</td><td>256</td><td>209</td><td>160</td><td>240</td><td>223</td><td>229</td><td>217</td><td>208</td><td>10.2</td><td>1</td><td>4</td></thl1<></thl1<>	777 766 77.5 77.9 78.0 78.3 0.8 - 4 4 4 3 3 4 4 10 - N Holes NS 80 Holes NH Holes NH NH N Holes NS 80 Holes NH Holes - - - SU Dat SU 80 SU SU SU NH Holes NH	Happerg Falling Number	22	256	209	160	240	223	229	217	208	10.2	1	4
Little In the constant of the	4 4 4 4 10 5 Holes KS 3 4 4 9 Holes KS 8 Holes Holes 21 21 20 20 80 Holes 21 21 20 20 20 20 21 21 20 20 20 20 21 21 20 20 20 20 22 21 20 20 20 20 21 21 21 20 20 20 22 21 21 20 20 20 23 21 21 21 21 21 24 21 21 21 21 21 25 21 21 21 21 21 26 21 21 21 21 21 27 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 21 22 21 21	Specific weight (kg/h)	772	78.4	2.12	76.6	775	6.17	17.0	76.0	78.B	80	3	4
N - see from before 7 4 4 3 3 4 4 10 - contact KWSGreek hybro	4 4 3 3 3 4 4 10 N Hone NS SU Hone Hone Hone Hone N SU Date SU Hone Hone Hone Hone SU Date SU SU SU SU Hone R SU SU SU SU SU Hone R SU SU SU SU SU Hone R SU SU SU SU SU Hone Hone R SU SU SU SU SU SU Hone	Olsease resistance												
antiset Konstonen hytena h	 Hotes NS SU Hotes Hotes PHP Hotes NS SU Date SU Hotes PHP Hotes Hotes NS SU Date SU Robes 20 Hotes Hotes Hotes NS ZH 21 21 21 21 21 21 21 21 21 21 21 21 21	Brown rust (1-9) - see note below	1.2		4	•		*	n		4	10	ł	ì
KWSGreek Hybro	Holes NS SU Hybers Hybers Hybers Hybers Hybers - 3U Dat SU SU Hybers Hybers Hybers -	BreedenUK contact												
NWS SU Date SU SU <ths< td=""><td>SU Date SU SU SU SU Mins 21</td><td>Breader</td><td>KWSGmbh</td><td>Hybro</td><td>Hybro</td><td>NS</td><td>ßU</td><td>Hybro</td><td>Hybro</td><td>dHd</td><td>Hybro</td><td></td><td>36</td><td>04944</td></ths<>	SU Date SU SU SU SU Mins 21	Breader	KWSGmbh	Hybro	Hybro	NS	ßU	Hybro	Hybro	dHd	Hybro		36	04944
aystem 21 21 21 21 21 22 22 22 22 22 22 22 22	21 21 18 15 21 16 16 12 10 16 10 10 10 10 10 10 10 10 10 10 10 10 10	UK contact	KWS	SU	2U	Dat	ns	8	ns	3	2U		RINS	ns
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	21 21 14 15 21 14 15 17 14 14 14 14 14 14 14 14 14 14 14 14 14	Status in DL system												
	P1 P1 P1 P1	Year first listed	24	45	HZ	5	105	2	7		25			
	tude a recommendation.	DL etmas	ы	- 13	łd	E	3	+	đ	4	×		- 13	4

NS = Nordic Seed, Denmark PHP = P Jrl Potemon, Germany (phpetemen.com) SU = Staten Union UK (saatten-union co.uk) KWSGmbh = KWS Lochov GmbH (kws-uk.con Datt = Datton Seeds (datmark.co.sk) Hybro = Hybro, Germany KWS = KWS UK (Kres-ek.com) Carry = Convertional valuety C = Yheld control (for current table) [] = Limmed data P1 = First year of listing

LSD = Least significant difference Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence livel

Winter nye sust ratings

The RL 2021/C2 now features disease raitings for writer rise (brown nut). As Described, not Recommended, vanetes, less information is available to calculate the raitings. As a rescribed to calculate the raiting use a surgering use a surgering disease. No of raitings, statistical synthemes (LSD) should be better into account when deciding it vanetees have othered uncooptible to disease.

su us

Sub U

N4/H

Yield, quality, agronomy and disease resistance

			and a	-	Recommended for the UK (both EastWest and North regions)	UK (both	EmtW	A send No.	all regio	1			1				Described varieties	varieties	
RECOMMENDED	xpessegury	noriva 6J	eputy	epery	BURLY	agtey	Xerbay		noianeige3 MD		- 10 916 A	CK judaju CF &	\$ MMOID	Crocodile S	Croozer \$	(2/2) CSJ egenevy	itixa	1 home	1
larinety type boges of recommendation	N N	Hyre H	ž š	ě š	Neve K	§ š	ŝš			88.		10 A	Nyteria UK 89	Hypera EW 86	Hybeld EW 5p		there DK 80	Hybrid UK HEAR	A Prairie
nted Kingdom (5.3 tha)			101	101	100	101	105	101	102			1	101	80	100	11	8	8	
CastWest region (5.2 tha)	8	8	101	101	107	1	1	101	102	8		2	101	103	101	00	2	a	
lorth region (5.9 the)	1 62	Ŧ	-	104	102	***	102		ä		2		102	E	5	87		8	
mited Kingdom (A.9 shu)	100		681	108	106	-	101	102	102			-	160	-	101	3	a	26	1
astWest region (4.8 tha)	ş	2	101	101	100	-	1	102	102		8	14	100		102	**	ı	8	
orth region (5.4 she)	101	-	101	ş	102	-	102		102	5	2		101	11	R.	2	z	8	2
mined Kingdom (5.4 thts)	110	•	\$ 1	105	108	601	103	103	101	8	8		101	48	3	11	28	28	S.
and seed years (5% demonstrated	Control =		10.00	-				1000					1						-
relaid Kingdom (5.0 tha)	110	·	109	105	105	805	102	102	101	8	8		5 100	8	8	53	a	a	di la
antic fuelance																			P
esistence to kodping (1-9)		5	*		8					•		161		£	10	6.0			ę
om stiffness (1-0)	*	•					-							**	-	0.5	•	*	đ
hortness of stern (1-9)		ł		*	6	*	•	•		2				•	•	02	•	÷	ł.
ant height (cm)	150	19	155	8	10	995	151	16	165	150	19	103	1	222	191	5.8	ş	14	ę.
arteness of fowering (1-9)	*	•			•	-				+			•	•	-	6.0	•	ħ	2
inference of mutuality (1-9)		•			•										-	104	•		4
ucd scheeter	æ	æ	æ	4	æ		•	•	α		•	æ					æ	æ	
acht keel wood (1-0)	4	۴	4			÷	ħ	•	•				•	•	•	0.7	1	•	e.
tern carriver (1-8)	+	ñ		ø							*		•	-	-	80	*		1
	a	æ	æ	÷	α	œ	•	æ	1	1	1	1.61	i.	100			•		í.
making (and this modulated)															A NOTE OF				1
Oil content, fungcide-treated (%)	45.2	44.5	45.5	48.7	45.6	48.7	497	1.16	46.5	45.6	45.3	43.8	48.5	45.0	44.8	50	46.6	45.7	9
The second second second second section in the	10.0	2112	10.2	1.8	12.3	0.0	10.04	12.0	10.1	10.8	12.3	14.3	10.8	12.8	12.2		9.4	14.0	

Varieties no longer listed in the UK (both East/West and North regions): Alizze, Campus and Mer Varieties no longer listed in the East/West region: Aquila, Ergo, Flamingo and Wembley.

HEAR (High Erucuc Acid) and semi-dwarf varieties are described. Data are provided for information only and do not constitute a recommendation. On the 1–9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance).

Glucosinolate contents are taken from the National List trials data.

apart are significantly different at the 95% confidence level. Average LSD (5%): Varieties that are more than one LSD

The target (spring) plant population is 40 plants/m2 for RL trials. Maximum seed rate is 70 seeds/m² and may be lower if conditions permit.

AHDB Recommended List Winter Oilseed Rape 2021/22

Yield, quality, agronomy and disease resistance

AHDB				Recommended for the EastWest region only	of fee the	EastWee	d region o	1			Reco	commended for I North region and	ended for the region only		UK = Recommended for both the East/West and North regions
RECOMMENDED	engin 61	notectedon	Raspect	heeqkoed	6upe0	geouðe	Passier	51216	615/3CF 8	\$ 10 FZZ	UN2816	sobadraß	Indiax3 XO	(%S) CS3 abelany	EW = Recommended for the East/West region N = Recommended for the North region 5p = Spedific recommendation (5p) = Resistance to Turnip Yellows Wrus is no longer a specialitic category. Architect and Temptation have a
Variety type	Hybrid	Hybrid	Hybrid	1	Hybrid	Hybrid	Hybrid	Hybrid	Hydrid	Hydroid	Conv	Conv	Hybrid	1	specific recommendation for this trait.
Scope of recommendation	EW	EW	EW	EW	EW	EW	EW	EW	8	8	z	z	x		Conv = Conventional open-pollinated variety PH - Pactored hybrid
	NEW	NCM	NEW	NCN								×	•		CD - Comi-dwarf
Gross output, yield adjusted for all con	dant (% treate	d control											- and		5 — Viold control (for current table)
United Kingdom (S.3 she)	1001	1001	1081		103	100	top	100	8	10	101	10	101	4.6	 Enterta contrion (nor current table). For this table Communication Alizary users also
EastWest region (5.2 tha)	109	107	106	(•)	103	103	102	102		2	101	8	101	0.5	rol unis kable canipus anu Auzze were also control variatias but ara no londar lictad
North region (5.9 tha)	1022	196	101	1	100	100	8	2005	ti.	-	102	101	100	5.7	* = Variety no longer in trial in region
Seed youtd (% treated control)															
United Kingdom (4.9 the)	1001	100	100		102	100:	101	1000	8	1.16	102	01	101	4.2	arowing on land infected with
EastWiest region (4.8 tha)	108	107	107		103	103	101	102	15	2	100	28	101	9.4	common strains of clubroot These
North region (5.4 tha)	102	-	102		8	1001	18	-	8	14	104	101	100	8.8	varieties should only be used
Distantial gross output, your aquated	for oil contant	Same C	man and	a (joup											in-line with current AHDB clubroot
United Kingdom (5.4 tha)	*	1	*		102	60	102	101	z	10	8	97	104	8.8	management guidelines, to reduce
Untreated seed yield (% untreated conf	- 90												10.00		the risk of resistance breakdown.
United Kingdom (5.0 the)	4		4	1411	101	98	101	101	8	18	8	97	104	6.3	& = Herbicide tolerant variety.
Agronomic Natures															PT279CL and Nizza CL have a specific
Resistance to lociging (1–9)	(e)	10	10	2.00	10	-10	10	-	60	1	E	60	80	0.3	recommendation for tolerance to
Stem stiffness (1-9)	10	*	*	- 201	*	4			•		•			9.6	specific imidazolinone herbicides
Shortness of stem (1-9)	8		0		9	1	•		ø		9		10	0.2	(a Clearfield [®] variety).
Plant height (cm)	162	156	162		160	151	153	156	156	152	152	155	16	2.0	 — = HOLL (High Oleic, Low Linolenic) variety
Earliness of flowering (1-9)	~	•	*		*	1		**	•	1	•	•		0.3	
Earliness of maturity (1-9)	Ð		10	1.007	40	-	•	-	-0	411	10	4	-	979	α = Untreated yield data available to 2017,
Pod shatter	æ	a	4	1	a	1.00	æ	R		140	1	a	н		2018 and 2019 only. Untreated trials
Disease resistance															
Light leaf spot (1-8)	10	4	10		10	-	10	-	ю	-	10	•	1	0.7	[] = Limited data
Stern canker (1-9)	-		*	(19)	*			-	10		•	•		9.0	П
Turv	æ	æ		10	œ	(œ	(*)		N(a)			0.00		Yellows Virus (Iut V) but this has not
Seed quality (et 2% multiure)															been verthed in Kecommended List tests.
Oil content, fungicide-treated (%)	45.6	45.4	45.0		1.05	45.5	48.2	45.4	45.0	44.8	44.7	45.0	46.5	0.3	
Olucosinolate (jumoles/g)	11.5	12.2	11.8		12.2	9.6	11.1	8.4	10.9	14.9	10.7	1111	11.9		

11	 Recommended for the East/West region
Ш	Recommended for the North region
11	Specific recommendation
11	Resistance to Turnip Yellows
	Virus is no longer a specialist category.
	Architect and Temptation have a
	specific recommendation for this trait.
11	Conventional open-pollinated variety
Ш	Restored hybrid
Ш	Semi-dwarf
11	Yield control (for current table).
	For this table Campus and Alizze were also
	control varieties but are no longer listed.
Ш	Variety nolonger in trial in region
11	Specific recommendation for
	growing on land infected with
	common strains of clubroot. These

AHDB Recommended List Winter Wheat 2021/22 **Yield, agronomy and disease resistance**

RECOMMENDED	KWS SYAR	lieheal	Crusoe	vinteulli TDA	KWS Extas	KWS Siskin	Noted Du	eoning DJ	animulli OJ	re Guasar	KWS Firet	Inem	nonteA 0.1	KWS Barn	Elicit	OSJ ageravA	
End-use group		miden	Group		den	im Gros	up 2				nabim	Group					111V — Docommonded for the 11V
Scope of recommendation	¥	ž	ž	ž	š	š	EAW	5	š	ž	š	w	ž	š	ž		
		v				0		NEN	NUN	NEW		NEW	NEW	U			$E \otimes W = Recommended for the East and West majors$
Fungloide treated grain yield (% treated con	lind																
United Kingdom (10.8 t/hs)	8	26	8	8	100	100	8	103	102	402	101	101	101	1005	8	22	N = Recommended for the North region
East region (10.7 tha)	8	18	8	8	001	8	8	NO1	201	205	100	1004	102	8	8	2.5	C = Yield control (for current table).
West region (10.9 sha)	8	16	26	18	101	100	8	102	101	101	101	8	100	100	8	29	For this table KWS Santiago was also a
North region (11.0 Uha)	25	8	8	8	8	8	8	[1006]	[100]	[101]	8	[100]	land	ä	8	3.4	yield control but is no longer listed.
Untreated grads yield (% treated control)																	* — Variety no longer in trials
United Kingdom (10.8 tha)	82	74	8	8	8	8	22	8	98	8	8	8	8	F	2	\$7	[] — limited data
Agronomic features																	
Resistance to lodging without PGR (1-9)		10	-	7	7	10	-	E	E	E	10	E	E	•		0.8	@ = Believed to carry the Pch1
Resistance to lodging with PGR (1-9)			-	8	-	F			-	*	-	*	-10	-	-	9.6	Rendezvous resistance gene to eyespot
Height without PGR (cm)	2	8	5	8	8	3	8	8	a	8	8	8	8	18	8	1.9	but this has not been verified in
Ripening (days +/- Skyfal), -ve = earlier)	•	0	•	Ŧ	7	0	;	*	÷	*	ï	Ŧ	2	Ŧ	•	0.7	Recommended List tests.
Resistance to sprouting (1-9)	-0	n	ø	9	E	10	191	101	E	Đ.	E	1	<u>s</u>	ø	5	1.0	R = Believed to be resistant to orange
Disease contrince																	wheat blossom midge (OWBM) but this
Mildian (1-0)	1	9	10	7	1	1	9	4	10	9	10	n	4	φ	10	1.3	has not hear varified in
Yellow rust (1-9) - see note below		•	0	0	-0	•	*	•	ħ	9	h		ø	•	•	0.9	Recommended list tests
Brown rust (1-0) - see note below	-		e	9	1	-	10	40	80	80	10		m	40	10	1.0	
Septonia tribci (1-9)	6.4	89	6.3	6.0	8.0	6.5	5.4	1.1	7.0	88	6.8	6.6	7.4	42	6.1	1.1	LSD = Least significant difference
Eyeepot (1-9)	92	3	10	8	101	-	12	20	10	Ŧ	T	Ŧ	5	4	4	1.7	Average LSD (5%):
Fusarium ear blight (1-9)	10	•	•	9		10	-	•	10	۹	10	۰	10	ø	10	0.5	Varieties that are more than one
Orange wheat biossom midge	•	α		+			α	a	æ	œ	α	α	α	α	œ		LSD apart are significantly different
																	at the 95% confidence level.

Yellow and brown rust ratings

reported cases of high yellow and brown rust disease levels in 2019 indicate the initial emergence of new rustraces or exceptionally high disease pressure at some sites. Given the highly dynamic nature of the yellow and brown rust populations in the UK over recent yeas all varieties During 2019 higher than expected levels of yellow and brown rist were seen in some varieties in some varials. Careful analysis of the 2019 data from RL trials did not reweal dramatic changes in average disease ratings. These are national average ratings and it is not yet clear if the should be closely monitored for rusts, as local rust populations may differ from the general UK population and may be more or less virulent on a variety than the RL rating suggests.

-																			ľ	Ĩ
RECOMMENDED	No. N.	LG Skyscraper	NGT Saki	Ingilloq2 D.1	notet3	wollewS	KWS Jackal	aonebrui2 0.1	SY Instor	KWS Cranium	KMS Kinetic	meelD	RGT Gravity	KWS Kenin	medeno	eninevioW TOR	serderts	olletsoO	elopoeut	(%S) QSJ eBelevy
End-use group				Boft	Group								Har	d Grou	-					
Scope of recommendation		ž	š	š	N	z	N	ž	ž	ž	ž	ž	ž	E&W	ž	80	ž	ž	w	
					v	Man			T	NEW		U				NEW				
ungloide-treated grain yield (% treate	ted control)																			
United Kingdom (10.6 t/ha)		106	104	103	101	100	100	100	104	104	103	103	103	102	102	102	105	8	8	2.2
East region (10.7 t/ha)		105	ţ,	102	101	10	100	8	101	ģ	<u>8</u>	103	103	102	101	101	101	8	8	2.5
West region (10.9 tha)		101	104	ţ,	101	100	100	100	104	ş	₿	103	1 03	102	105	102	101	8	102	2.9
North region (11.0 Uha)	22	103	102	101	101	[102]	101	8	105	[102]	10	102	101	102	101	[604]	102	8	lio61	3.4
ntreated grain yield (% treated contro	8	3																		
United Kingdom (10.8 Uhe)		5	88	毘	2	R	R	12	R	R	22	5	=	2	18	2	=	8	8	5.7
gronomic faatures																				
Resistance to lodging without PGR (1-9)		ł	1	L	•	<u>ع</u>	-	9	φ	Ø	~	-	•	1	2	E	Þ	•	•	0.8
Resistance to lodging with PGR (1-9)		2	1		80	•	-	1	-	60	10	~	~	-		80	-			0.6
Height without PGR (cm)		8	88	8	ø	R	87	67	8	18	3	67	88	8	18	8	18	83	8	61
Ripering (days +/- Skyfall, -ve = earlier)		0	E+	+	Ŧ	0	•	42	Ŧ	4	•	•	Ŧ	r	7	4	•	ri +	0	0.7
Resistance to sprouting (1–9)		Ē	[9]	E	9	5	2	4	5	Ð	9	5	Ŧ	ø	ø	[9]	2	~	ε	1.0
Nume resistance:																	2			
Mildew (1-9)		2	*0	9	2	-	-	7	9	-	0	10	4	1	~		ø	80	E	1.3
Yellow rust (1-9) - see note below		10			-			8	-	-	4	-0	ħ	4	-	ю	with the	a	æ	6.0
Brown nust (1-9) - see note below		ø		9	-	•	-		10	×0	0	10	ø		10	-	-0	10	*	1,0
Septoria tritici (1-9)		6.1	6.5	5.2	4.1	5.7	4.8	7.9	6.8	60	\$.3	6.1	4.9	4.8	6.8	5.3	6.1	6.0	8.3	11
Eyespot (1-9)		Ŧ	10	10	4	E	4		15	5	Z	+	4	10	m	E	4	10	Ø	1.7
Fusarium ear blight (1–9)		*		9	9	w	9		1	•	40	ω	ø		-	9	ø	•	0	0.5
Orange wheat bicssom midge		æ	æ	a	α	æ	æ	æ	α	æ	æ	æ	æ	α	4		×	×		
On the 1-9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance) Comparisons of varieties across regions are not valid.	iows the character to	o a high d	egree (e.c	J. high res	istance).					Varieti All yield	es no long s in this ta	jer listed ble are tak	: Evolutio en from t	n, JB Diegi reated tria	o, KWSTrii Is receivin	Varieties no longer listed : Evolution, JB Diego, KWS Trinity and Myriad. All yields in this table are taken from treated trials receiving a full fungicide and PGR programme.	yriad. Igicide an	d PGR pro	gramme.	
Yellow and brown rust ratings During 2019 higher than expected levels of yellow and brown rust were seen in some varieties in some trials. Careful analysis of the 2019 data from RL trials did not reveal dramatic changes in average disease ratings. These are national average ratings and it is not yet clear if the response to a second province and brown rust propulations in the UK cover treated analysis of the 2019 data from RL trials did not reveal dramatic changes in average disease ratings. These are national average ratings and it is not yet clear if the response to a second province and brown rust propulations in the UK cover resent years all varieties from second province and proven rust propulations in the UK cover resent years all varieties from second for rusts. Sich and the rust rust cover averaging and rust varieties and average discover transform rust populations in the UK cover resent years all varieties from second for rusts. Sich and the rust rust cover averaging and rust varieties and average discover transform rust populations in the UK cover resent years all varieties and rust and for rusts. Sich and rust cover and rust and rust varieties and rust and rust and rust and rust propulations in varieties and may be more or the year and the second rust and rus	ellow and brown rust were seen in some varieties in some trials. Careful analysis of the 2019 data from RL trials did not reveal dramatic solver and brown rust were seen in some varieties in some stracks or exceptionally high discase pressue strans fisce, from the H rust somaliations and differ from the central VK postigation and may be more or less vindent on a variet vitan the RL faint suggests	an in som e the initi om the a	e varieties al emerge eneral UK	in some t nce of nev populatio	rials. Care v rust race n and may	ful analys s or excep	is of the 2 stionally h or less vir	119 data from RL igh disease press alent on a variety	trials did r rre at som than the F	not reveal. e sites. Giv AL rating s	dramatic c /en the hi <u>c</u> uqqests.	hanges in thly dynar	average d nic nature	lisease rati of the yell	ngs. Thes	e are natio. rown rust j	nal averag	e ratings in the U	and it is no K over rec	: yet clear i nt years all
	C = Yield control (for current table). For this	r current	table). For	this -	@ 	Believed	o carry th	@ = Believed to carry the Pch1 Rendezvous	SI	LSD=L	LSD = Least significant difference	cant diffe	ance	4	6		1		010/	
E&W = Recommended for the East and West regions N = Recommended for the North region	table KWS Santiago was also a yield control but is no longer listed.	was also a 1.	yiela cont	0	resis verifi	tance gen ed in Recc	e to eyesp immende	resistance gene to eyespot but this has not been verified in Recommended List tests.	been	Average R = Beli	eved to be	Varieties t resistant t	nat are mo orange v	ore than or. vheat blos:	ie LVJ apa som midgi	Avedge LXJ (5%); Vareties that are more than one LSJ apart are significantly different at the 55% confidence level. R = Believed to be resistant to orange wheat blossom midge (OWBM) but this has not been verified in Recommended List tests.	hcantiy dii out this ha	terent at t s not beer	he 95% co i verified ir	findence lev Recommer

AHDB Recommended List Winter Wheat 2021/22

RECOMMENDED LIST CHARTS

AHDB Recommended List Winter Barley 2021/22 Market options, yield and grain quality, agronomy and disease resistance

RECOMMENDED	wn		eibneT		XNU	ujetuno	Support	Dimiet			llawrO		RewenD	Tower	B)us	eisseD	ks) ash ea
	Electr	Craft	ямя	otioB	Borde	м өт	SMX	SMX	etrol	ษอา	22	Surge			Calific	sмя	ener4.
End-use group		The second	100	ž	3	8	8					100					
	1		NY.	N.S.	NEW	13											
regions would grant yield fit to and	General																
Underst Köngsburn (3, 7 Uhus)	18	8	10	108	8	104	100	103	103	100			1001	0 100			2.6
East region (9.5 thu)	-18	8	tor	101	405	305	105	105	100	104	102 1	103 101	1001		100		55
West region (3.8 that)	8	g	linoi1	1woul	Indat	102	103	101	103	101	Ċ		0 100	0 101			40
North region (3.8 the)	8	8	109	105	N.	800	101	101		101	101	001 00	101 0	1 100	100		3.8
tracted grady year (% tracted control																	
Unded Kingdons (9.7 Mus)	11	R	8	8	ā	8						80 10	82 8	11 12	14	188	5
In market options																	
MBC mailing approval for tinewing use	a.					-	-		14.41						-	•	
Specific weight (kg/k)	89.2	6.0.5	1.69.1	8.68	6.69	66.4	68.7	66.5	6.65	10.3	08.1 1/10	83 N	0. 68	41 675	68.2	114	0.8
Screenings (% Prough 2.25 mm)	23	21	22	-	-	22	23	24	-	1.7	2.5	0 61	1 21	1 23	1 2.0	11	0.7
Screenings (% through 2.5 mm)		6.0	12	8.0	55	15	13	75	11	1.4	6.0	8.0 2.	1 24	1 7.3	1.0	3.1	1.8
Minogen content (%)	146	1.67		3	+				1+1			*	1	*		1	6.08
Austin P.S. synthem																	
		ta .	5	5	T.		8	1 1	R	-	-	H 1 H	11. 1	P 1 1	F1 13	2	
enamic features																	
tesistance to lodging (1-0)	12			*	4	1	-	1	1	1		7 8	10 1		1	5	•
Street height without PGR (on)		50	100	1998	1941	87	124	100	List			* *	*	0 00			0.5
Straw height with POR (cm)	10	s	-	z	8	99	-81	8	-	25	-	2 2	-	-	92	10	3.0
Rpaning (4)-KINS Orwell, -ve = earlier)		:	•		•	•	•	-	- 1+		0	0	0	*			2
Wintee handiments #	3	6	117	ia.	Şa.	į.	3	1	120	1	5	1	2	111	100	72	9
			-			*	*									-	0.1
	1		•		*	1				7.	1	7		1	5		2
Reynchosponum (1–9)			*						1			4 . F				•	2
			1	10	X	•			*			* *	-	7	5	-	92

RECOMMENDED	\$ Inomie8	\$ votebuty XS	\$ medspoix Y2	\$ flochebriurit YS	SY Baracooda \$	\$ Augeg	\$ expooreg	(Ayun-j	\$ even	(%s) QSJ edenevy	eiseO SWX	opyld	elledue.J US	Cheater	\$ oliberniA Y2	
End-use group				-	k-row lee							1111	- Freedo		THE NUMBER OF THE OWNER.	
Scope of recommendation	š	UK	5	UK NEW	¥.	š	ğ u	Š٥	<u>ş</u> .		Not ad	ded to Re-	Not added to Recommended List	dLiet	Not added to Pt.	
Fundicists dreated grain yand (% Invated control)												1000		- Contraction	and a second	
United Kingdom (B.7 tha)	107	1004	101	101	1004	306	105	104	103	2.6	104	104	505	26	100	
East report (9.5 tha)	108	100	101	101	107	906	5	80	5	11	105	100	103		901	
Vest region (3.8 thu)	107	801	101	[101]	101	105	105	105	304	40	Isoul	101	[205]	1961	Itoti	
North region (\$48 ths)	107	108	107	107	107	105	105	104	102	3.8	101	105	NO.	-	107	
Universited grain yield []s treated control]											103				100	
United Kingdom (9.7 sha)	R	8	88	-	2	8	85	8	81	5.1	83	18	88	-	18	
Main market options																Un the 1–9 scales, high figures indicate
MBC matting approval for brewing use		4			2							ä	2			that a variety shows the character to a
Grain queby											10.00				and a strength	high degree (e.g. high resistance).
Specific weight (hg/h)	68.7	69.7	60.7	8.69	68.7	88.6	69.2	0.69	70.8	80	8.69	5.09	683	6 69	98.4	Compansons of variety performance
Soreenings (% through 2.25 mm)	2.8	2.6	1.8	2.3	2.1	2.4	25		2.3	0.7	2.1	1.9	2.5	17	22	across regions are not valid.
Screenings (% through 2.5 mm)	916	50	10	1.9	7.4	84	6.7	191	14	-	13	6.3	72	54	7.5	UK = Recommended for the UK
Nängen content (%)		4	6					(ii		0.08		12		1.78		C = Yield control (for current table)
Statut to R.L. system																LSD = Least significant difference
Year first insed	10	12		12	19	10	10	12	14							W = Recommended for the West region
Agreetomic features																* = Variety no longer in trials
Restitution to lodging (1-9)	1		4	9			1		1	•			1		7	N = Recommended for the North region
Staw height without PGR (om)	112	[t20]	113	[114]	Ę.	111	112	8	110	90	[26]	logi	Isel	last	11130	\$ = Hybrid variety
Strew height with PGR (on)	105	101	101	106	110	50	110	g	104	3.0	8	z	8	10	111	[] = Limited data
Riperving (+/-KOMS Chreat), -vs = earlier)	•	7	0	7	0	0	•	ę	•	1.1	0	•	7	•	0	# = The winter hardiness scores are
Whiter handlinean #	1		4		-							2	4		4	taken from extreme tests in the
Oleaner relitionor																Jura mountains of France but
Mildew (1-9)	5	~	2	8	-	-	9			10	-					currently insufficient data for
Brown nust (1-B)	-							1	ę	14	•		7	80	•	1–9 ratings.
Rhynchosperium (1-9)	1					L		*		11			2		7	R = Resistant to barley mild mosaic
Net blokch (1-9)	\$		н	E						9	E.	12	1	R.	E	virus (BaMMV) and to barley yellow
BarMV	æ	œ	œ	×	œ	æ	æ	œ	æ		æ	ĸ	æ		ec.	mosaic virus (BaYMV) strain 1.

AHDB Recommended List Winter Barley 2021/22

Market options, yield and grain quality, agronomy and disease resistance

RECOMMENDED LIST CHARTS

RECOMMENDED LIST CHARTS

RECOMMENDED	Yewyay	vobnelq2 Y2	netsgruT YS	xxoleri	nstiloqomeoO	Oldeid DJ	ateanuaJ	tensiq TDR	sinosi	sunsis	KMS Sassy	oniqor9	6uhie3	zibeO	Yewie	Prospect	
End-use group							ting varieties								Feed varieties		
Scope of recommendation	š	š	¥	ž	ž	š	š	ž	M	ž	ž	¥	8	E&W	ž	ž	
to the set of the descent second s	NEW				v	0	U	0		·		ç		NEW			-
United Kingdom (7.5 thu)	106	103	103	103	102	ĝ	101	100	8	8	8	8	8	103	103	<u>5</u>	
East region (7.5 tha)	106	103	101	102	102	103	102	8	8	8	8	8	8	305	103	101	
West region (7.1 tha)	[801]	103	102	102	105	100	102	100	101	86	8	8	8	[106]	102	102	
North region (7.7 t/ha)	103	103	103	103	<u>1</u> 0	103	100	8	8	8	8	8	8	100	101	100	
ntreated grain yield (% treated control																	
United Kingdom (7,5 tha)	8	15	16	85	8	8	8	5	8	60	61	8	84	8	16	8	
ronomic features																	
Resistance to lodging (no PGR) (1-9)	4		F	E	7	1	T		2	*	0	2		2	1	7	
Straw height (cm)	£	R	23	7	R	R	R	£	92	"	28	£	2	22	7	11	
Riperring (+/-Concerto, -ve = earlier)	ż	*2	÷	÷	ŗ	*2	÷	0	0	Ŧ	Ŧ	•	7	:	•	•	
Resistance to tracking (1–9)	0	80	80	8	7	60	60	8	8	7	ø	10	8	80	60	8	
asso relations																	
Mildew (1–9)	a	•	6	0	0	a	6	0	6	0	0	ω	8	6	σι	0	
Brown rust (1-9)		e	•	4	4	50	10	-0	10	6	60	ø	4	*	32	-	
Rhynchosporium (1–9)		[4]	(F	5	40	w	10	-	191	40		10	9	2	2	Ð	
ain market options																	
MBC matting approval for brewing use	F	٩	٩	,	٩.	a.	H.	u.	a.	æ	z	0	2	8	2	x	
MBC mailing approval for mail distilling use			٩	4	:			z		0	ы.	z				•	
A PAN and the state of the sector distribution and																	

Varieties no honger listed: Chanson, Hacker, KWS Irina, LG Tomahawk, Olympus, Ovation and Scholar. Growers are strongly advised to check with their buyer before committing to a malting variety without full MBC approval. W = Recommended for the West region On the 1–9 scales, high figures indicate that a variety shows the character to a high degree (e.g. high resistance). Comparisons of variety performance across regions are not valid. LSD = Least significant difference UK = Recommended for the UK

C = Yield control (for current table). For this table KWS Irina was also a yield control but is no longer listed. [] = Limited data Average LSD (5%): Varieties that are more than one LSD apart are significantly different at the 95% confidence level. Sp = Fairing is suitable for the production of malt for grain distilling

AHDB Recommended List Spring Barley 2021

PGR0 Descriptive List Winter Beans 2021

The control for yield comparisons is the mean of 4 & 5 year varieties. Yield differences of less than 9.9% are not statistically different.

		2	~	2	10	\mathcal{P}	1	ł
	Year first listed		18	16	14	03	12	
	No. Years in matrix		5	5	5	5	5	
racters	Protein content (% dry)		26.1	25.6	26.0	26.4	25.9	
Seed characters	Thousand seed weight (g) (@15%mc)		686	703	650	682	669	
	Standing ability at harvest (1-9)		8	9	7	7	8	
	Straw length (cm)		126	132	119	122	116	
ters	Earliness of maturrity (1-9)		5	4	9	9	7	
Agronomic characters	Flower colour		υ	С	С	U	υ	
Agror	Yield as % Control		109	104	66	96	92	
	UK Agent see appendix		Sen	Sen	LUK	Sen	Sen	
and the second s		Pale Hilum	Vespa	Bumble	Tundra	Wizard	Honey	

(1-9) A high rating indicates that the variety shows the character to a high degree. The scales of characters of winter beans do not necessarily correspond with those for spring beans. Wizard has resistance to leaf & pod spot (Ascochyta fabae).

wizału ilas resistance to real œ pou spot (Ascouriya rabae). Varieties Vincent & Norton will be added subject to confirmed NL status.

© PGR0 2020 19.11.20

PGR0 Descriptive List Combining Peas 2021

The control for yield is the mean of 4 & 5 year varieties (3.85t/ha). Yield differences of less than 10.5% are not statistically different.

	4					7		9			1.00		<u>k 1</u>			
	Year first listed		20	20	21	17	18	21	16		20	18	21	21	18	21
	No. Years in matrix		4	4	e	S	S	ი	S		4	ŝ	e	e	S	е
iracters	Protein content (% dry)		21.9	21.5	21.5	22.1	22.5	22.0	22.6		21.3	21.2	21.2	22.1	22.3	21.7
Seed characters	Thousand seed weight (g) (@15%mc)		295	308	292	280	270	265	280		276	277	303	279	244	267
e to	Powdery mildew *		[2]	[s]	[s]	[s]	[MR]	[MR]	[s]		[s]	[s]	[s]	[S]	[s]	[S]
Resistance to	Downy mildew (1-9)		ß	4	9	S	9	9	9		7	9	ŝ	9	7	ŝ
"	Pea wilt (Race 1)		œ	œ	œ	œ	œ	œ	œ		œ	œ	œ	œ	œ	œ
racters	Standing ability at harvest (1-9)		9	9	7	9	9	7	7		7	9	9	9	9	7
Agronomic characters	Straw length (cm)		79	84	86	84	85	11	79		82	93	85	91	88	86
Agrono	Earliness of maturity (1-9)		7	9	5	9	9	7	7		5	4	9	9	5	5
	Yield as % Control		120	115	112	=	109	106	102		112	11	11	109	108	108
	UK Agent see appendix		Sen	LSPB	Sen	Sen	KWS	IARA	Sen		Sen	LSPB	LSPB	IARA	Sen	Sen
Contraction of the local division of the loc		Yellow (white)	Kameleon	Orchestra	Kaiman	Karpate	Manager	Raider	Kareni	Green (Blue)	Kactus	Bluetime	Stroma	Greenway	Karioka	Kiravi

PGR0 Descriptive List Combining Peas 2021

The control for yield is the mean of 4 & 5 year varieties (3.85t/ha). Yield differences of less than 10.5% are not statistically different.

			NY PARA				1	•		(1-9) A high rating inc	the variety shows the	All varieties are semi-	Pea wilt (<i>Fusarium ox</i>	f. sp. pisi)(race 1)	R = Resistant; S = Su	Data for new varietie	*Powderv mildew Br	information - $HR = Hightrian Hight$	MR = Moderate resis $S = Susceptible. \bigcirc P_1$
	21	20	19	18	19	20	07	9	17	16	17		9	8		21	80	20	20
I	e	4	5	5	4	4	5	5	5	4	5		e	e		e	2	4	4
	22.1	22.4	20.5	22.7	22.1	22.0	21.4	21.5	20.6	21.1	22.0		21.9	24.6		23.2	23.2	23.1	22.4
	281	324	266	232	253	275	292	263	225	256	258		238	245		405	370	381	377
	[s]	[S]	[S]	[HR]	[s]	[HR]	[s]	[S]	[HR]	[S]	[s]		[s]	[S]		[S]	[S]	[s]	[S]
	7	9	7	8	5	7	9	9	4	9	5		9	7		ß	4	e	e
	œ	œ	œ	œ	œ	œ	œ	œ		œ	œ		œ	s		œ	œ	œ	œ
	9	9	9	2	9	9	9	9	ŝ	7	7		9	ŝ		4	9	7	2
	8	8	6	68	85	62	29	81	73	87	86		99	79		98	84	82	81
1	9	7	2	с,	5	ŝ	5	7	8	9	5		9	7		4	ŝ	e	4
	108	107	106	106	106	103	100	100	86	94	92		90	86		97	86	86	85
	IARA	LSPB	LSPB	LSPB	KWS	Ě	Ě	Agrii	IARA	Ě	Ľ		Ĕ	Dalt		LSPB	Dalt	IARA	Sen
	Mikka	Greenwich	Croft	Blueman	Mankato	LG Aviator	Prophet	Daytona	Greenwood	Kingfisher	LG Stallion	Maple	Mantara	Rose	Marrowfat	Akooma	Sakura	Octavia	Banshee

riety shows the character to

A high rating indicates that

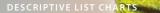
PGR0 Descriptive List Spring Beans 2021

The control for yield is the mean of 4 & 5 year varieties (4.47t/ha). Yield differences of less than 6.3% are not statistically different.

			(1-9)	thect	The s	neces	The ex	= JVC =	*Rust	The L	Varie	will	0 PG	AG	2	KW	9	1	3 3
	Year first listed		21	16	20	20	21	20	21	13	13	17	05	20		19	19		64
	No. Years in matrix		e	9	4	4	ი	4	e	ŝ	2	ŝ	5	4		5	ŝ		S
racters	Protein content (% dry)		27.0	27.3	26.9	27.4	27.8	27.5	27.2	27.1	27.4	29.2	27.6	26.9		27.1	28.0		28.7
Seed characters	Thousand seed weight (g) (@15%mc)		561	535	619	573	522	550	528	583	556	546	580	636		556	527		408
Resistance to	Rust* (1-9)		ŝ	4	9	ŝ	4	ŝ	ŝ	4	4	9	4	ŝ		4	4		
Resist	Downy mildew (1-9)		e	80	4	ю	e	4	ю	2	ŝ	4	ŝ	8		9	4		7
su	Standing ability at harvest (1-9)		9	7	9	9	9	7	9	9	9	8	7	9		9	7		S
characti	Straw length (cm)		123	121	121	125	122	122	122	122	121	114	116	115		116	121		126
Agronomic characters	Earliness of maturity (1-9)		9	ŝ	2	7	9	7	9	9	9	9	7	6		7	9		2
Agi	Flower colour		υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ	υ		υ	υ		υ
	Yield as % Control		108	106	105	105	105	105	104	102	102	66	97	94		104	101		62
	UK Agent see appendix		SU	LSPB	LSPB	LSPB	SU	Ň	SU	LSPB	LSPB	Ϊ	Ň	LSPB		LSPB	LSPB		WAC
		Pale Hilum	Stella	Lynx	Macho	Ghengis	Capri	LG Raptor	Daisy	Vertigo	Fanfare	LG Cartouche	Fuego	Yukon	Pale Hilum & LVC	Victus	Tiffany	Black Hilum, Tic	Maris Bead

character to a high degree.) A high rating indicates the variety shows

essarily correspond with those for winter beans. scales of characters of spring beans do not


export market usually requires pale hilum types. = Low Vicine & Low Convicine.

st data influenced mostly by 4 trials in 2020.

LSD is approx 1 rating point.

ieties LG Viper, LG Sphinx, Boliva & Allison be added subject to confirmed NL status. GR0 19.11.20

VA Church (Bures) Lik tion Union Ltd Limegrain UK 8 LS Plant Breleneva Ltd OWS UK Las UIK AGEN **ARAuri** ENT CODE ON DI

Grasswise

CLAMPBUSTER Highly productive cutting ley for 2-3 years

SUPERSWARD Intensive 3 -5 year cutting ley with the option to graze

EMERALD Flexible cutting and grazing ley for 5-7 years

GOLD Long term mixture suited for both cutting and grazing

www.hlhltd.co.uk

HUTCHINSONS Crop Production Specialists

Your local Hutchinsons agronomist is able to provide you with seeds and varieties advice and guidance, as well as supply all of the seeds that have been mentioned within this book and many more.

For more information on any of our products or services please contact a member of the Hutchinsons Seed Team:

NATIONAL SALES ENQUIRIES:

David Bouch SEED MANAGER – NATIONAL Office: 01526 831306 Mobile: 07802 630107

Peter Brundle SEED MANAGER – SOUTH Mobile: 07774 707494

Emma Roughton Commercial SEED & FERTILISER SUPPORT – CENTRAL

Mobile: 07825 645404

Stewart MacIntyre SEED MANAGER – NORTH Mobile: 07834 933890 **David Neale CENTRAL** Mobile: 07799 695549 Tel: 01451 844264

Jack Richards LOGISTICS AND SEED CO-ORDINATOR – SOUTH WEST

Office: 01872 227944

Dianne King SEED ADMIN – DORRINGTON 01526 831309

Gosia Furman SEED ADMIN – DORRINGTON Tel: 01526 831002

Lucy Thomas SEED ADMIN - TRURO 01872 227941 Central Seed Office Tel: 01526 832771 H L Hutchinson Limited Weasenham Lane • Wisbech Cambridgeshire PE13 2RN

Tel: 01526 832771 Fax: 01526 832967

Email: seedorders@hlhltd.co.uk

www.hlhltd.co.uk

@Hutchinsons_AgHLHutchinsons